Structure of Solutions to partial differential equations degenerating on several hypersurfaces

多个超曲面上退化的偏微分方程解的结构

基本信息

  • 批准号:
    15540188
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

The indicial polynomial and its zeros called characteristic exponents play important roles in the study of Fuchsian partial differential equations in the sense of Baouendi-Goulaouic, that is, linear partial differential equations with regular singularity along the initial surface. In these equations, a variable (t) is treated as a special variable, which is called the Fuchsian variable. In 2004, we showed the existence of distribution null-solutions having their supports on the specific quadrant for equations with several Fuchsian variables (in the sense of N.S.Madi) under natural assumptions, with the collaboration with Professor M.Mechab and Ms.M.Belarbi in Algeria. In the process, it became clearer that the situation of the existence of null-solutions in the case of several Fuchsian variables is very different from that in the case of one Fuchsian variable. In 2005, we considered the problem concentrating on those points. We could not obtain good result as we had expected, we could clarify the relation between our result and the existence result of null-solutions to the degenerate weakly hyperbolic equations, which had been formerly obtained by us. Further progress is expected on the ground of this relation.We could obtain also the following results and others.1.Determination of the structure of singularities of solutions to nonlinear Fuchsian partial differential equations without any additional assumptions on the characteristic exponents. 2. A very sharp result on necessary conditions and sufficient conditions for first order nonlinear partial differential equations of normal form in a complex domain in order to have singular solutions. 3. For nonlinear partial differential equations called "nonlinear totally characteristic type" in complex domains, 1)the existence of singular points, 2)the nonexistence of singular points, 3)the uniqueness of solutions.
指示性多项式及其称为特征指数在Baouendi-goulaouic的意义上,即线性偏微分方程在初始表面具有正常奇异性的线性偏微分方程,在Baouendi-goulaouic的意义上起着重要作用。在这些方程式中,变量(t)被视为特殊变量,称为紫色变量。在2004年,我们展示了分布零分解的存在,在自然假设下,在具有多个Fuchsian变量(在N.S.Madi的意义上)的方程方程中对特定象限进行了支持,并与M.Mechab和M.Mechab教授和女士的合作进行了合作。阿尔及利亚的belarbi。在此过程中,很清楚,在几个紫红色变量的情况下,存在无溶液的情况与一个fuchsian变量的情况大不相同。在2005年,我们考虑了关注这些要点的问题。我们无法像预期的那样获得良好的结果,我们可以阐明结果与否定结果与堕落的弱肥大方程的存在之间的关系,这是我们以前获得的。从这种关系的角度来看,您还可以获得以下结果和其他结果。1。确定对非线性紫外线偏微分方程的解决方案的结构,而没有任何特征指数的其他假设。 2。在复杂域中正常形式的一阶非线偏微分方程的必要条件和足够条件的非常尖锐的结果,以便具有奇异的溶液。 3。对于复杂域中的非线性部分微分方程,称为“非线性完全特征类型”,1)单数点的存在,2)单数点不存在,3)解决方案的独特性。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability regions for linear differential equations with two kinds of time lags
具有两种时滞的线性微分方程的稳定域
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SAKATA;Sadahisa;T.Hara
  • 通讯作者:
    T.Hara
Removable singularities of holomorphic solutions of linear partial differential equations
线性偏微分方程全纯解的可去奇点
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    芦野隆一;萬代武史;守本晃;Shigeki Aida;KAWAMURA Shinzo;Shigeki Aida;猪狩勝寿
  • 通讯作者:
    猪狩勝寿
M.Belarbi, T.Mandai, M.Mechab: "Null-solutions for partial differential operators with several Fuchsian variables"Mathematische Nachrichten. To appear.
M.Belarbi、T.Mandai、M.Mechab:“具有多个 Fuchsian 变量的偏微分算子的零解”Mathematische Nachrichten。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Igari: "Removable singularities of holomorphic solutions of linear partial differential equations"J.Math.Soc.Japan. 56:1. 88-113 (2004)
K.Igari:“线性偏微分方程全纯解的可去除奇点”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Wave-front tracking for the equations of isentropic gas dynamics
  • DOI:
    10.1090/s0033-569x-04-00935-8
  • 发表时间:
    2004-12
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    F. Asakura
  • 通讯作者:
    F. Asakura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MANDAI Takeshi其他文献

MANDAI Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MANDAI Takeshi', 18)}}的其他基金

Degenerate Partial Differential Equations, Wavelet Transform, and their Applications
简并偏微分方程、小波变换及其应用
  • 批准号:
    20540193
  • 财政年份:
    2008
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface, and its Applications
初表面上退化的偏微分方程解的结构及其应用
  • 批准号:
    12640194
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface
初表面上退化的偏微分方程解的结构
  • 批准号:
    10640157
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了