Applications of tight closure and F-singularity to algebraic geometry

紧闭包和F-奇异性在代数几何中的应用

基本信息

项目摘要

Given a pair of a variety of characteristic p and an effective divisor on it, one can associate a real number called the F-pure threshold. Since this invariant is defined as a characteristic p analog of the log canonical threshold in characteristic 0, it is desirable that F-pure thresholds are rational numbers similarly as log canonical thresholds. N.Hara studied F-pure thresholds of pairs of a nonsingular surface and an effective divisor, and proved based on Monsky's idea of p-fractals that the F-pure thresholds are rational provided that the base field is finite. When the divisor is defined by a homogeneous polynomial f (x, y), the F-pure threshold c(f) can be estimated more precisely, and we can obtain a finite list of possible value of c(f) for a fixed degree d=deg f and characteristic p. We also proved that the Monsky's function ψ_f(t) has a piecewise quadratic limit as p→∞.M.Ishida studied real fans from a viewpoint of toric geometry, as well as moduli parameter of Catanese-Ciliberto-Ishida surface. T.Kajiwara studied the theory of logarithmic abelian varieties, the relationship of tropical hypersurfaces and degeneration of projective toric varieties, and the theory of tropical toric varieties. K.-i.Watanabe studied geometric interpretation of integrally closed monomial ideals in 3 variables, multiplier ideals, and F-thresholds. K.Yoshida gave estimates of multiplicities of Stanley-Reisner rings and Buchsbaum homogeneous algebras, and studied the structure of these rings when they have minimal multiplicities.
给定一对多种特征P和有效的除数,可以将一个称为F-Pure阈值的实际数字关联。由于此不变性被定义为特征0中对数规范阈值的特征p类似物,因此希望F-Pure阈值与对数规范阈值类似。 N.hara研究了一个非词性表面和有效除数对的F-Pure阈值,并基于Monsky的P-fractals的观念证明了F-Pure阈值是理性的,只要基地是有限的。当除数通过均匀的多项式f(x,y)定义时,可以更精确地估计f-pure阈值c(f),我们可以获得固定度d = deg f和特征p的可能值的有限列表。我们还证明,蒙斯基的函数ψ_f(t)从曲折的几何学的角度以及catanese-ciliberto-ishida表面的模量参数。 T.Kajiwara研究了对数的Abelian品种的理论,热带超曲面的关系和投射福利品种的变性以及热带感谢您的品种的理论。 K.-i.Watanabe研究了3个变量,乘数思想和F阈值的整体封闭单体思想的几何解释。 K.Yoshida估计了Stanley-Reisner Rings和Buchsbaum均匀代数的多重性,并在这些环的结构最少时研究了这些环的结构。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.-i.Watanabe;S.Takagi
  • 通讯作者:
    S.Takagi
Stanley-Reisner rings with minimal multiplicity
具有最小重数的 Stanley-Reisner 环
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Terai;K.Yoshida
  • 通讯作者:
    K.Yoshida
F-thresholds and Bernstein-Sato polynomial
F 阈值和 Bernstein-Sato 多项式
On a generalization of test ideals
关于测试理想的概括
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    浅沼照雄;S.M.Bhatwadekar;小野田信春;尾形 庄悦;原 伸生;S.Ogata;S.Ogata;T.Kajiwara;石田 正典;石田正典;尾形 庄悦;原 伸生;S.Ogata;N.Hara;尾形庄悦;尾形庄悦;原 伸生;原 伸生
  • 通讯作者:
    原 伸生
F-thresholds and Bernstein-Sato polynomials
F 阈值和 Bernstein-Sato 多项式
共 12 条
  • 1
  • 2
  • 3
前往

HARA Nobuo的其他基金

Development of property evaluation method of porous materials for performance design of separation membranes
开发用于分离膜性能设计的多孔材料性能评价方法
  • 批准号:
    17H03448
    17H03448
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Aspects of purely inseparable morphisms in algebraic geometry
代数几何中纯粹不可分离的态射的各个方面
  • 批准号:
    22540039
    22540039
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Approach to Invariants in Commutative Algebra
交换代数中不变量的代数几何方法
  • 批准号:
    18540007
    18540007
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Method in Commutative Algebra
交换代数中的代数几何方法
  • 批准号:
    13640005
    13640005
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
  • 批准号:
    22H01112
    22H01112
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
  • 批准号:
    20K03522
    20K03522
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Study of F-blowup and singularity
F-爆炸和奇点研究
  • 批准号:
    20840036
    20840036
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
    Grant-in-Aid for Young Scientists (Start-up)
Frobenius Manifolds and F-manifolds in Singularity Theory
奇点理论中的 Frobenius 流形和 F 流形
  • 批准号:
    EP/D020328/1
    EP/D020328/1
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Research Grant
    Research Grant
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)