Applications of tight closure and F-singularity to algebraic geometry
紧闭包和F-奇异性在代数几何中的应用
基本信息
- 批准号:16540005
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given a pair of a variety of characteristic p and an effective divisor on it, one can associate a real number called the F-pure threshold. Since this invariant is defined as a characteristic p analog of the log canonical threshold in characteristic 0, it is desirable that F-pure thresholds are rational numbers similarly as log canonical thresholds. N.Hara studied F-pure thresholds of pairs of a nonsingular surface and an effective divisor, and proved based on Monsky's idea of p-fractals that the F-pure thresholds are rational provided that the base field is finite. When the divisor is defined by a homogeneous polynomial f (x, y), the F-pure threshold c(f) can be estimated more precisely, and we can obtain a finite list of possible value of c(f) for a fixed degree d=deg f and characteristic p. We also proved that the Monsky's function ψ_f(t) has a piecewise quadratic limit as p→∞.M.Ishida studied real fans from a viewpoint of toric geometry, as well as moduli parameter of Catanese-Ciliberto-Ishida surface. T.Kajiwara studied the theory of logarithmic abelian varieties, the relationship of tropical hypersurfaces and degeneration of projective toric varieties, and the theory of tropical toric varieties. K.-i.Watanabe studied geometric interpretation of integrally closed monomial ideals in 3 variables, multiplier ideals, and F-thresholds. K.Yoshida gave estimates of multiplicities of Stanley-Reisner rings and Buchsbaum homogeneous algebras, and studied the structure of these rings when they have minimal multiplicities.
给定一对不同的特征 p 及其有效除数,我们可以关联一个称为 F 纯阈值的实数,因为该不变量被定义为特征 0 中对数规范阈值的特征 p 模拟,因此它是与对数正则阈值类似,F-纯阈值是有理数是可取的。N.Hara 研究了非奇异曲面和有效除数对的 F-纯阈值,并根据 Monsky 的思想进行了证明。 p-分形表明,如果基域有限,则 F 纯阈值是有理数。当除数由齐次多项式 f (x, y) 定义时,可以更精确地估计 F 纯阈值 c(f),对于固定度数 d=deg f 和特征 p,我们可以得到 c(f) 可能值的有限列表 我们还证明了 Monsky 函数 ψ_f(t) 具有分段二次极限。由于p→∞.M.Ishida从复曲面几何的角度研究了实扇,以及Catanese-Ciliberto-Ishida曲面的模参数,T.Kajiwara研究了对数阿贝尔簇理论、热带超曲面与退化的关系。射影复曲面簇和热带复曲面簇理论 K.-i.Watanabe 研究了 3 变量、乘数的积分闭单项式理想的几何解释。 K. Yoshida 给出了 Stanley-Reisner 环和 Buchsbaum 齐次代数的重数估计,并研究了这些环具有最小重数时的结构。
项目成果
期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.-i.Watanabe;S.Takagi
- 通讯作者:S.Takagi
Stanley-Reisner rings with minimal multiplicity
具有最小重数的 Stanley-Reisner 环
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:N.Terai;K.Yoshida
- 通讯作者:K.Yoshida
F-thresholds and Bernstein-Sato polynomial
F 阈值和 Bernstein-Sato 多项式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Mustata;S.Takagi;K.Watanabe
- 通讯作者:K.Watanabe
On a generalization of test ideals
关于测试理想的概括
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:浅沼照雄;S.M.Bhatwadekar;小野田信春;尾形 庄悦;原 伸生;S.Ogata;S.Ogata;T.Kajiwara;石田 正典;石田正典;尾形 庄悦;原 伸生;S.Ogata;N.Hara;尾形庄悦;尾形庄悦;原 伸生;原 伸生
- 通讯作者:原 伸生
F-thresholds and Bernstein-Sato polynomials
F 阈值和 Bernstein-Sato 多项式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.-i.Watanabe;M.Mustata;S.Takagi
- 通讯作者:S.Takagi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARA Nobuo其他文献
HARA Nobuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARA Nobuo', 18)}}的其他基金
Development of property evaluation method of porous materials for performance design of separation membranes
开发用于分离膜性能设计的多孔材料性能评价方法
- 批准号:
17H03448 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Aspects of purely inseparable morphisms in algebraic geometry
代数几何中纯粹不可分离的态射的各个方面
- 批准号:
22540039 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Approach to Invariants in Commutative Algebra
交换代数中不变量的代数几何方法
- 批准号:
18540007 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Method in Commutative Algebra
交换代数中的代数几何方法
- 批准号:
13640005 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
- 批准号:
20K03522 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of F-blowup and singularity
F-爆炸和奇点研究
- 批准号:
20840036 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Frobenius Manifolds and F-manifolds in Singularity Theory
奇点理论中的 Frobenius 流形和 F 流形
- 批准号:
EP/D020328/1 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Research Grant
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
- 批准号:
17540043 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)