Algebro-Geometric Method in Commutative Algebra
交换代数中的代数几何方法
基本信息
- 批准号:13640005
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We reinterpreted the theory of tight closure in prime characteristic commutative algebra from the viewpoint of singularity theory and birational geometry. Namely, we generalized the concepts of tight closure and F-singularities, gave foundation to the theory thereof, and applied it to problems in commutative algebra and al-gebraic geometry. Our results are summarized as follows:1.Study of F-singularities of Rees algebras : There have been few researches on Rees algebras from a geometric viewpoint, although a Rees algebra is a geometric object in the sense that its "Proj" gives a blow-up. Taking this into account, we studied ring-theoretical and geometric aspects of Rees algebras R(1) associated to an in-primary ideal I of a normal local ring (R,m) in terms of miscellaneous methods such as F-singularities, blow-up and desingularization.2.A generalization of tight closure : We generalized the notion of the tight closure of an ideal in a ring R of characteristic p to those of "D-tight clo … More sure" associated to an effective Q-divisor D on Spec R and of "I-tight closure" associated to an ideal I of R. We established foundation of the theory of I-tight closure and the ideal r(I) defined via I-tight closure, and proved various properties of the ideal -r(I) such as Skoda's theorem, restriction theorem and subadditivity.3.Applications of I-tight closure : We considered the global generation of adjoint bundles K_X+nL of a polarized variety (X, L), as an application of a variant of Skoda's theorem in the canonical module of the section ring of (X,L). In particular, we obtained an alternative proof of K.E.Smith's result on a special case of Fujita's conjecture in characteristic p, assuming that Litself is spanned.We also constructed a characteristic p analog T(‖I.‖) of the asymptotic multiplier ideal associated to a filtration of ideals I.={I_n|n= 1,2,...}. As an application, we reinterpret the result on the uniform behavior of symbolic powers due to Ein-Lazarsfeld-Smith and Hochster-Huneke. Less
我们从奇点理论和双有理几何的角度重新解释了素特征交换代数中的紧闭包理论,即推广了紧闭包和F-奇点的概念,为其理论奠定了基础,并将其应用于交换问题中。我们的研究成果概括如下: 1.Rees代数的F奇异性研究:目前对Rees代数的研究还很少。从几何角度来看,尽管里斯代数是一个几何对象,但其“Proj”给出了爆炸,考虑到这一点,我们研究了与里斯代数 R(1) 相关的环理论和几何方面。正常局部环 (R,m) 的初级理想 I,采用 F 奇点、爆炸和去奇异化等各种方法。2.紧闭包的推广:我们推广了特征 p 的环 R 中的理想的紧密闭合的概念与与 Spec R 上的有效 Q-除数 D 相关的“D 紧密闭合……更确定”以及与我们建立了I-紧闭包的理论基础以及通过I-紧闭包定义的理想r(I),并证明了理想-r(I)的各种性质,如斯柯达定理、限制定理和subadditivity.3.I-紧闭包的应用:我们考虑了极化簇 (X, L) 的伴随丛 K_X+nL 的全局生成,作为 Skoda 定理在截面环规范模中的变体应用(X,L) 特别是,我们在特征 p 的 Fujita 猜想的一个特例上获得了 K.E.Smith 结果的替代证明,假设 Litself 是我们还构造了与理想值 I.={I_n|n= 1,2,...} 过滤相关的渐近乘数理想的特征 p 模拟 T(‖I.‖) 作为应用,我们重新解释。 Ein-Lazarsfeld-Smith 和 Hochster-Huneke Less 关于符号权力统一行为的结果。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Hara: "A characteristic p analog of multiplier ideals and applications"Comm.in Algebra. 印刷中. (2004)
N.Hara:“乘数理想的特征 p 模拟和应用”Comm.in 代数 (2004)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuo Hara: "Kawachi's invariant for fat points"Journal of Pure and Applied Algebra. 165. 201-211 (2001)
原信夫:“河内脂肪点不变量”纯粹与应用代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Hara, K.-i.Watanabe, K.Yoshida: "Rees algebras of F-regular type"J.Algebra. 247. 191-218 (2002)
N.Hara、K.-i.Watanabe、K.Yoshida:“F-正则类型的里斯代数”J.代数。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Hara, K.-i.Watanabe, K.Yoshida: "Rees algebras of F-regular type"J.of Algebra. 247. 191-218 (2002)
N.Hara、K.-i.Watanabe、K.Yoshida:“F-正则类型的里斯代数”J.of Algebra。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuo Hara: "A characteristic p analog of multiplier ideals and applications"Communications in Algebra. (発表予定).
Nobuo Hara:“乘数理想和应用的特征 p 模拟”代数通讯(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARA Nobuo其他文献
HARA Nobuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARA Nobuo', 18)}}的其他基金
Development of property evaluation method of porous materials for performance design of separation membranes
开发用于分离膜性能设计的多孔材料性能评价方法
- 批准号:
17H03448 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Aspects of purely inseparable morphisms in algebraic geometry
代数几何中纯粹不可分离的态射的各个方面
- 批准号:
22540039 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Approach to Invariants in Commutative Algebra
交换代数中不变量的代数几何方法
- 批准号:
18540007 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of tight closure and F-singularity to algebraic geometry
紧闭包和F-奇异性在代数几何中的应用
- 批准号:
16540005 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Commutative Ring Theory via Resolution of Singularities
通过奇点解析的交换环理论
- 批准号:
20K03522 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of F-blowup and singularity
F-爆炸和奇点研究
- 批准号:
20840036 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Frobenius Manifolds and F-manifolds in Singularity Theory
奇点理论中的 Frobenius 流形和 F 流形
- 批准号:
EP/D020328/1 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
- 批准号:
17540043 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)