Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
基本信息
- 批准号:22H01113
- 负责人:
- 金额:$ 11.07万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
伊山 修其他文献
Preprojective algebras and τ-tilting theory
原投影代数和 τ-倾斜理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
伊山 修;越谷重夫;Mayumi Kimura;Osamu Iyama;水野有哉;Osamu Iyama;浅芝 秀人;Osamu Iyama;浅芝 秀人;浅芝 秀人;Osamu Iyama;浅芝 秀人;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;浅芝 秀人;Mayumi Kimura;Izuru Mori;水野有哉;中島健,浅芝秀人;Osamu Iyama;相原琢磨;浅芝 秀人;Osamu Iyama;Izuru Mori;水野有哉 - 通讯作者:
水野有哉
Generalized complex structures on 4-manifolds and generalized hyperkaehler structures
4 流形上的广义复结构和广义超凯勒结构
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Hoshino;N. Kameyama and H. Koga;Ryushi Goto;森重文;足立 崇英;R. Goto;森重文;毛利 出;伊山 修;R. Goto;森重文;越谷重夫;後藤竜司;森重文;伊山 修;後藤竜司;Shigefumi Mori;毛利 出;R. Goto;伊山 修;R. Goto;Shigefumi Mori;佐藤眞久;Shigefumi Mori;R. Goto;浅芝 秀人;Shigefumi Mori;伊山 修;R. Goto - 通讯作者:
R. Goto
Feigin-Frenkel, Adamovic-Milas, and Frenkel-Kac-Wakimoto
Feigin-Frenkel、Adamovic-Milas 和 Frenkel-Kac-Wakimoto
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa - 通讯作者:
Tomoyuki Arakawa
Endo-trivial modules for finite gorups with dihedral Sylow 2-subgroups
具有二面 Sylow 2 子群的有限群的内琐碎模块
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa;伊山 修;Tomoyuki Arakawa;越谷重夫 - 通讯作者:
越谷重夫
伊山 修的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('伊山 修', 18)}}的其他基金
整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
- 批准号:
23K22384 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
- 批准号:
17F17814 - 财政年份:2017
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
曲面の組合せ論によるブラウアーグラフ代数の導来圏の研究
利用表面组合学研究布劳尔图代数的派生范畴
- 批准号:
17F17019 - 财政年份:2017
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
準傾複体とBridgeland安定性条件による導来圏の研究
使用准倾斜复合体和布里奇兰稳定性条件研究派生类别
- 批准号:
12F02318 - 财政年份:2012
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
クラスター代数の圏論化と歪対称化可能な場合への拡張
簇代数的范畴理论化和可斜对称情况的推广
- 批准号:
10F00723 - 财政年份:2010
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
代数幾何学における非可換特異点解消
代数几何中的非交换奇点解析
- 批准号:
08F08781 - 财政年份:2008
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
多元環の表現論。特にクイバー表現のテンサー積と導来圏
多维环的表示论。
- 批准号:
08F08787 - 财政年份:2008
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似国自然基金
5G用球形氮化物粉体的限域制备新技术及导热机理研究
- 批准号:U20A20241
- 批准年份:2020
- 资助金额:260 万元
- 项目类别:联合基金项目
激光激发高效R-G-B三基色荧光粉研究
- 批准号:50802106
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
食品中の花粉・食物アレルギー症候群のアレルゲン分析法を開発し、児童の発症を防ぐ
开发食物花粉和食物过敏综合症的过敏原分析方法,以预防儿童患上该综合症
- 批准号:
18K02200 - 财政年份:2018
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
トロボノイドのもつ水素結合能と錯体形成能を利用した分子集合体の構築
利用氢键和trobonoids的复合物形成能力构建分子组装体
- 批准号:
10146240 - 财政年份:1998
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (A)