An attempt toward a solution to the C^r-stability conjecture (r【greater than or equal】2)
尝试解决C^r稳定性猜想(r【大于或等于】2)
基本信息
- 批准号:15540197
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The dynamical systems theory originated from two notions of hyperbolicity and structural stability, and researches toward a solution to the stability conjecture played an important role in the developments of the theory. The conjecture asserts every structurally stable system is hyperbolic, and in 1987 it was proved by Mane for r=1. In the proof, so-called Franks lemma was essential. Since the lemma does not work for the C^r-topology (r【greater than or equal】2), the conjecture is still open when r【greater than or equal】2. The purpose of this research project is to prove the hyperbolicity under the shadowing-C^r-open condition (r【greater than or equal】2) fusing with Pesin theory, and by applying the techniques obtained in this process, we try to solve the C^r-stability conjecture for r 【greater than or equal】 2.In 2003, we restrict ourselves to 2-dimensional dynamical systems and concentrated to prove the hyperbolicity of the system under the shadowing-C^r-open condition. In 2004, we continuously proceeded the above strategy, but there were noting special for publication. However, for some partial results obtained in this research, we have found some handles to generalize them for higher dimensions. In our opinion, the achieve percentage of this project might be evaluated 50%.Before to show the hyperbolicity of the dynamical systems, it is necessary to prove the hyperbolicity of the periodic points. Under the shadowing-C^r-open condition (r【greater than or equal】2), the head investigator proved the hyperbolicity of the periodic points etc., and making use of the facts, he also proved the hyperbolicity for 2-dimensional dynamical systems by assuming additional conditions (as was stated it turned out that this result can be generalized).A base of this research project has been completed. Hereafter we would like to do my best to complete the project.
动态系统理论源自双曲和结构稳定性的两个音符,并研究解决稳定概念的解决方案在理论的发展中起着重要作用。该概念断言每个结构稳定的系统都是双曲线的,在1987年,Mane证明了R = 1。在证据中,所谓的弗兰克斯引理至关重要。由于引理对C r-Topology不起作用(R [大于或相等] 2),因此当R大于或等于】2时,猜想仍然是打开的。 The purpose of this research project is to prove the hyperbolicity under the shadowing-C^r-open condition (r【greater than or equal】2) fusing with Pesin theory, and by applying the techniques obtained in this process, we try to solve the C^r-stability concept for r【greater than or equal】2.In 2003, we restrict ourselves to 2-dimensional dynamical systems and concentrated to prove the hyperbolicity of the system under the阴影c^r-open条件。在2004年,我们继续采取上述战略,但有特殊的出版物。但是,对于这项研究中获得的一些部分结果,我们发现了一些将它们推广到更高维度的处理方法。我们认为,该项目的成就百分比可能会被评估为50%。在显示动态系统的双曲线之前,有必要证明周期性点的透明度。在阴影-C^r-open条件(R [大于或相等] 2)下,首席调查员证明了周期点等的双透色性并利用事实,他还证明了通过假设其他条件的二维动态系统的夸张性(正如所指出的那样,结果证明这是该研究项目的基础)。此后,我们想尽力完成该项目。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sakai, Kazuhiro, S.Pilyugin, A.Rodionova: "Orbital and weak shadowing properties"Discrete and Continuous Dynamical Systems. 9. 287-308 (2003)
Sakai、Kazuhiro、S.Pilyugin、A.Rodionova:“轨道和弱阴影特性”离散和连续动力系统。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sakai, Kazuhiro: "C^1-stably positively expansive maps"Bulletin of the Polish Academy of Sciences, Mathematics. (to appear). (2004)
Sakai,Kazuhiro:“C^1-稳定正扩张图”波兰科学院通报,数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sakai, Kazuhiro: "Various shadowing properties for positively expansive maps"Topology and its Applications. 131. 15-31 (2003)
Sakai,Kazuhiro:“正扩展地图的各种阴影属性”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Various shadowing properties and their equivalence
- DOI:10.3934/dcds.2005.13.533
- 发表时间:2005-04
- 期刊:
- 影响因子:1.1
- 作者:Keonhee Lee;K. Sakai
- 通讯作者:Keonhee Lee;K. Sakai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAI Kazuhiro其他文献
SAKAI Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAI Kazuhiro', 18)}}的其他基金
Integrability in gauge-gravity correspondence and gluon scattering amplitudes
规范重力对应和胶子散射振幅的可积性
- 批准号:
22740172 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
ON THE CHARACTERIZATION OF HOMOCLINIC CLASSES BY MEANS OF THE SHADOWING PROPERTY
论用阴影性质表征同宿类
- 批准号:
22540218 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ON THE CHARACTERIZATION OF CHAIN COMPONENTS BY MEANS OF THE SHADOWING PROPERTY
论用影子特性表征链元件
- 批准号:
19540209 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing participatory intervention toolkits and its monitoring systems for workplace risk reduction by health care workers in Asia
开发参与式干预工具包及其监测系统,以减少亚洲医护人员的工作场所风险
- 批准号:
19406018 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on the characterization of C^r-diffeomorphisms possessing the shadowing property
具有遮蔽性质的C^r-微分同胚的表征研究
- 批准号:
17540187 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Effacts of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
- 批准号:
16510210 - 财政年份:2004
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Effects of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
- 批准号:
14594029 - 财政年份:2002
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcations of vector fields possessing the shadowing property
具有阴影特性的矢量场的分叉
- 批准号:
13640225 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of exposure risk assessment technique with continuous monitoring of personal environment.
建立持续监测个人环境的暴露风险评估技术。
- 批准号:
11470114 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bifurcations of Dynamical Systems Satisfying the Pseudo-orbit Tracing Property
满足伪轨道追迹性质的动力系统的分岔
- 批准号:
11640217 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
两类非线性色散方程 N-极解的存在性和稳定性研究
- 批准号:11901092
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
对Kadison-Singer问题Marcus-Spielman-Srivastava解的一般性研究
- 批准号:11801136
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
波动方程解的长时间动力学行为研究
- 批准号:11671046
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
球面稳定同伦群与广义Sullivan猜想
- 批准号:11571186
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
向量丛的模空间里的曲线
- 批准号:11401330
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
A research on generic constructions
泛型结构研究
- 批准号:
16540123 - 财政年份:2004
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)