Integrability in gauge-gravity correspondence and gluon scattering amplitudes

规范重力对应和胶子散射振幅的可积性

基本信息

项目摘要

Integrability has become of increasing importance in obtaining analytic, exact results in gauge and string theories. In this research project we clarified several integrable structures in gauge and string theories and made full use of them to obtain analytic results. More specifically, we studied gluon scattering amplitudes at strong coupling in the maximally supersymmetric gauge theory in four dimensions. The gauge-gravity correspondence relates the amplitudes to the areas of certain minimal surfaces. Based on this correspondence we formulated a method of computing a general class of gluon scattering amplitudes by means of two-dimensional conformal field theories. We also studied the E-string theory, which is one of the simplest consistent supersymmetric field theories in six dimensions. We constructed a closed expression for the BPS partition function of the E-string theory toroidally compactified down to four dimensions and elucidated its properties.
在获得量规和字符串理论中的分析,确切的结果方面,集成性变得越来越重要。在该研究项目中,我们阐明了仪表和字符串理论中的几个可集成结构,并充分利用它们来获得分析结果。更具体地说,我们研究了在四个维度的最大超对称仪理论中强耦合的Gluon散射幅度。仪表对应关系将幅度与某些最小表面的区域联系起来。基于这种对应关系,我们制定了一种通过二维保形场理论计算一般类Gluon散射幅度的方法。我们还研究了电子弦理论,该理论是六个维度最简单一致的超对称场理论之一。我们为电子弦理论的BPS分区函数构建了一个封闭的表达式,曲面压缩至四个维度并阐明了其特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E弦理論とNekrasov型公式
E弦理论和Nekrasov型公式
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋弘毅;J.B. Camp;平沼悠太;大原謙一;A. Stroeer;Y. Koike;M. Matsuo;H. Murayama;酒井 一博
  • 通讯作者:
    酒井 一博
AdS_3時空における有限ギャップ型開弦解
AdS_3时空有限间隙型开弦解
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ogata;et al.;梅田貴士;酒井一博;K. Ogata;東山幸司;T.Umeda;吉永尚孝;酒井 一博;K.Ogata;T. Umeda;酒井一博
  • 通讯作者:
    酒井一博
Solving thermodynamic Bethe ansatz equations for gluon scattering amplitudes
求解胶子散射振幅的热力学 Bethe ansatz 方程
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F.Halzen;K.Igi;石田宗之;C.S.Kim;S. Yasui and K. Sudoh;T.Umeda;Kazuhiro Sakai
  • 通讯作者:
    Kazuhiro Sakai
Integrability of BPS equations in ABJM theory
ABJM 理论中 BPS 方程的可积性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaaki Morita;Hirotaka Takahashi;Y. Koike;村山斉;Kazuhiro Sakai
  • 通讯作者:
    Kazuhiro Sakai
Dark matter in E6 Grand unification
E6大统一中的暗物质
  • DOI:
    10.1007/jhep02
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. Schwichtenberg
  • 通讯作者:
    J. Schwichtenberg
共 18 条
  • 1
  • 2
  • 3
  • 4
前往

SAKAI Kazuhiro的其他基金

ON THE CHARACTERIZATION OF HOMOCLINIC CLASSES BY MEANS OF THE SHADOWING PROPERTY
论用阴影性质表征同宿类
  • 批准号:
    22540218
    22540218
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
ON THE CHARACTERIZATION OF CHAIN COMPONENTS BY MEANS OF THE SHADOWING PROPERTY
论用影子特性表征链元件
  • 批准号:
    19540209
    19540209
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Developing participatory intervention toolkits and its monitoring systems for workplace risk reduction by health care workers in Asia
开发参与式干预工具包及其监测系统,以减少亚洲医护人员的工作场所风险
  • 批准号:
    19406018
    19406018
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
A study on the characterization of C^r-diffeomorphisms possessing the shadowing property
具有遮蔽性质的C^r-微分同胚的表征研究
  • 批准号:
    17540187
    17540187
  • 财政年份:
    2005
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
The Effacts of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
  • 批准号:
    16510210
    16510210
  • 财政年份:
    2004
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
An attempt toward a solution to the C^r-stability conjecture (r【greater than or equal】2)
尝试解决C^r稳定性猜想(r【大于或等于】2)
  • 批准号:
    15540197
    15540197
  • 财政年份:
    2003
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
The Effects of Work-Family Balance and Health on Work Environment and Family Responsibility in Nursing with Shift Work.
轮班护理中工作与家庭平衡和健康对工作环境和家庭责任的影响。
  • 批准号:
    14594029
    14594029
  • 财政年份:
    2002
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Bifurcations of vector fields possessing the shadowing property
具有阴影特性的矢量场的分叉
  • 批准号:
    13640225
    13640225
  • 财政年份:
    2001
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Establishment of exposure risk assessment technique with continuous monitoring of personal environment.
建立持续监测个人环境的暴露风险评估技术。
  • 批准号:
    11470114
    11470114
  • 财政年份:
    1999
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Bifurcations of Dynamical Systems Satisfying the Pseudo-orbit Tracing Property
满足伪轨道追迹性质的动力系统的分岔
  • 批准号:
    11640217
    11640217
  • 财政年份:
    1999
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

超弦/M-理论、粒子物理相关问题的研究
  • 批准号:
    11105138
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

超弦理論からの可積分系の大統一理論の構成
从弦理论构建可积系统大统一理论
  • 批准号:
    23K25865
    23K25865
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
The Grand Unified Theory for Integrable Models from Superstring Theory
超弦理论中的可积模型大统一理论
  • 批准号:
    23H01168
    23H01168
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
非ラグランジアン理論の分配関数を用いた超対称場の理論の新しい対応関係の研究
利用非拉格朗日理论配分函数研究超对称场论中的新对应关系
  • 批准号:
    23K03393
    23K03393
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Geometry in string theory and spectral theory
弦论和谱论中的几何
  • 批准号:
    18K03657
    18K03657
  • 财政年份:
    2018
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Study of Integrable Models from Gauge Theories
从规范理论出发研究可积模型
  • 批准号:
    17KK0087
    17KK0087
  • 财政年份:
    2018
  • 资助金额:
    $ 1.66万
    $ 1.66万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)