Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
基本信息
- 批准号:15540177
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Kurata studied the existence and qualitative properties of optimal solutions to several optimization problems for nonlinear elliptic boundary value problems arising in mathematical biology and nonlinear heat conduction phenomena. Kurata also proved the existence of multiple stable patterns in population growth model with Allee effect, symmetry breaking phenomena of the least energuy solution to nonlinear Schroedindger equation and asymptotic profile of radial solution with vortex to 2-dimensional nonlinear Schroedinger equation.2. Okada studied numerial simulation and numerical analysis of nonlinear paratial differential equations. Especially, he constructed boundary spline function by using Newton extrapolation polynomials.3. Sakai studied Hele-Shaw free boundary problem in the case that initial data has a cusp and found sufficient conditions to specify the typical pheneomena.4. Isozaki discovered the relationship between the hyperbolic geometry and inverse problem. He also studied the inverse conductivity problem with discontinuous inclusions and found a numerical algorithm to detect discontinuities.5. Jimbo continued his research on the study of solution structure of the Ginzburg-Landau equation arising in superconductivity under heterogeneous environments. He also studied the spectrum of elliptic operator associated with the Maxwell equation and proved characterization of eigenvalues and proved a perturbation formula by using weak forms.6. Tanaka studied concentration phenomena of solutions and clustered solutions for nonlinear elliptic singular perturbation problems. Especially, he constructed high frequency solution to nonlinear Schroedinger equations and multi-clustered high energySolutions to a phase transition prolem.
1. Kurata研究了数学生物学和非线性热传导现象中出现的非线性椭圆边值问题的几个优化问题的最优解的存在性和定性性质。 Kurata还利用Allee效应证明了人口增长模型中多重稳定模式的存在、非线性薛定谔方程最小能量解的对称破缺现象以及二维非线性薛定谔方程涡旋径向解的渐近轮廓。 2.冈田研究了非线性偏微分方程的数值模拟和数值分析。特别是利用牛顿外推多项式构造了边界样条函数。 3. Sakai研究了初始数据有尖点情况下的Hele-Shaw自由边界问题,找到了描述典型现象的充分条件。 4.矶崎新发现了双曲几何与反问题之间的关系。他还研究了不连续夹杂物的电导率反问题,并找到了检测不连续性的数值算法。5. Jimbo 继续研究异质环境下超导中的 Ginzburg-Landau 方程的解结构。他还研究了与麦克斯韦方程相关的椭圆算子谱,证明了特征值的表征,并用弱形式证明了微扰公式。 6.田中研究了非线性椭圆奇异摄动问题的解和聚类解的集中现象。特别是,他构造了非线性薛定谔方程的高频解和相变问题的多簇高能解。
项目成果
期刊论文数量(158)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space
- DOI:10.1353/ajm.2004.0047
- 发表时间:2004-11
- 期刊:
- 影响因子:1.7
- 作者:H. Isozaki
- 通讯作者:H. Isozaki
A positive solution for a nonlinear Schroedinger equation on R^N,(with L. Jeanjean)
R^N 上非线性薛定谔方程的正解(与 L. Jeanjean 合作)
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Keisaku Kumahara;et al.;Kazunaga Tanaka
- 通讯作者:Kazunaga Tanaka
Hiroshi Isozaki: "Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidian space"Amer.J.of Math.. (to appear).
Hiroshi Isozaki:“双曲流形上的逆谱问题及其在欧几里得空间中的逆边值问题中的应用”Amer.J.of Math..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazushi Yoshitomi: "Band spectrum of the Laplacian on a slab with the Dirichlet boundary condition on a grid"Kyushu Journal of Mathematics. 57. 87-116 (2003)
Kazushi Yoshitomi:“在网格上具有狄利克雷边界条件的平板上拉普拉斯算子的能带谱”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masami Okada, S.Maeda: "Hamiltonian formulation of energy conservative variational integration by wavelet expansion"Journal of Functional Analysis. (to appear).
Masami Okada、S.Maeda:“通过小波展开的能量保守变分积分的哈密顿公式”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURATA Kazuhiro其他文献
KURATA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURATA Kazuhiro', 18)}}的其他基金
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational Problems and Inverse Problems
偏微分方程、变分问题和反问题解的研究
- 批准号:
13640183 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Harmonic Analysis, Solutions to Variational Problems and Partial Differential Equa
调和分析、变分问题的解法和偏微分方程的研究
- 批准号:
09640208 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
反问题变分正则化方法的优化和离散误差估计
- 批准号:12371424
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基尔霍夫型方程中的若干变分问题研究
- 批准号:12361024
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
非线性椭圆偏微分方程中的质量约束变分问题
- 批准号:12371107
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
几类非线性变分问题中解的存在性和性质问题研究
- 批准号:12371114
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
电磁场中若干变分问题的研究
- 批准号:12371113
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
共形写像に関連する変分問題と計量のpullbackに関する変分問題の研究
与保形映射和度量回调相关的变分问题研究
- 批准号:
22K03290 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Introduction of water vapor balance method into variational assimilation scheme to solve the spin-down problem.
将水汽平衡法引入变分同化方案中解决减速问题。
- 批准号:
19K23468 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A variational problem on conformality of maps and a variational problem on pullbacks of metrics
映射共形性的变分问题和度量回调的变分问题
- 批准号:
18K03280 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cut locus and variational problems with constaints on Finsler manifolds
求解 Finsler 流形上的轨迹和变分问题
- 批准号:
17K05226 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on a variational problem related to conformal maps and a variational problem of pullback of metrics
共形映射相关变分问题及度量回拉变分问题研究
- 批准号:
15K04846 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)