Study of Solutions to Partial Differential Equations, Variational Problems and Inverse Problems
偏微分方程、变分问题和反问题解的研究
基本信息
- 批准号:13640183
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Kurata studied the following:(1) breakdown of the monotonicity of the minimizer to a one-dimensional Cahn-Hilliard energy with inhomogeneous weight and the existence of non-topological solution to a nonlinear elliptic equation arising from Chern-Simons-Higgs theory.(2) optimal location of a obstacle in an optimization problem for the first Dirichlet eigenvalue to Schrodinger operator.2. Jimbo studied the existence of stable vortex solutions and the non-existence of permanent current in a convex domain to Ginzburg-Landau equation with magnetic effect. Tanaka constructed solutions with complex patterns to inhomogeneous Allen-Cahn equation and nonlinear Schrodinger equation. Murata studied the structure of positive solutions to elliptic equation of skew-product type and classifies the Martin boundary and Martin kernel completely.3. Mochizuki studied the inverse spectrum problem for Dirac operator and Sturm-Liouville operator by interior datas. Sakai studied the asymptotic behavior of the moving boundary for Hale-Shaw flow when the initial region has an angle in details.
1。库拉塔研究了以下内容:(1)最小化的单调性对一维的cahn-hilliard能量,具有不均匀重量的单调性,并且存在非平衡椭圆形方程的非平衡解决方案对chern-simons-higgs理论的最佳位置而引起的非线性椭圆方程。操作员2。 Jimbo研究了稳定的涡旋溶液的存在,并且具有磁性效应的凸域中的永久电流不存在。田中构建了具有复杂模式的解决方案,旨在使Allen-Cahn方程和非线性Schrodinger方程。 Murata研究了偏斜类型椭圆方程的阳性解决方案的结构,并完全对Martin Boundare和Martin内核进行了分类。3。 Mochizuki研究了室内数据的Dirac操作员和Sturm-Liouville操作员的逆频谱问题。当初始区域的细节角度时,Sakai研究了Hale-Shaw流动边界的渐近行为。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mochizuki(with I.A.Shishmarev): "Large time asymptotics of small solutions to generalized Kolmogorov-Petrovskii-Piskunov equation"Funkcialai Ekvasioj. 44. 99-117 (2001)
Mochizuki(与 I.A.Shishmarev):“广义 Kolmogorov-Petrovskii-Piskunov 方程小解的大时间渐近”Funkcialai Ekvasioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Kurata: "Existence of non-topological solutions for a nonlinear elliptic equation arising from Chern-Simons-Higgs theory in a general background metric"Duff. Integral Equations. 14. 925-935 (2001)
Kazuhiro Kurata:“在一般背景度量中,由 Chern-Simons-Higgs 理论产生的非线性椭圆方程的非拓扑解的存在”Duff。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kimie Nakashima: "Clustering layers and boundary layers in spatially inhomogeneous phase transition problems"Ann. Inst, H. Poincare Anal. Non Lineaire. 20. 107-143 (2003)
Kimie Nakashima:“空间非均匀相变问题中的聚类层和边界层”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中和永, L.Jeanjean: "A positive solution for an asymptotically linear elliptic problem on R^N autonomous at infinity"ESAIM Control Optim. Calc. Var.. 7. 597-614 (2002)
Kazunaga Tanaka,L.Jeanjean:“无穷大 R^N 自治的渐近线性椭圆问题的正解”ESAIM Control Calc。7. 597-614 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中和永, K.Nakashima: "Clustering layers and boundary layers in spatially inhomogeneous phase transition problems"Ann. Inst. H. Poincare Anal. Non Lineaire.. 20. 107-143 (2003)
Kazunaga Tanaka,K.Nakashima:“空间非均匀相变问题中的聚类层和边界层”Ann. H. Poincare Anal.. 20. 107-143 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURATA Kazuhiro其他文献
KURATA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURATA Kazuhiro', 18)}}的其他基金
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
- 批准号:
15540177 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Harmonic Analysis, Solutions to Variational Problems and Partial Differential Equa
调和分析、变分问题的解法和偏微分方程的研究
- 批准号:
09640208 - 财政年份:1997
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)