Study of Solutions to Partial Differential Equations, Variational Problems and Inverse Problems
偏微分方程、变分问题和反问题解的研究
基本信息
- 批准号:13640183
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Kurata studied the following:(1) breakdown of the monotonicity of the minimizer to a one-dimensional Cahn-Hilliard energy with inhomogeneous weight and the existence of non-topological solution to a nonlinear elliptic equation arising from Chern-Simons-Higgs theory.(2) optimal location of a obstacle in an optimization problem for the first Dirichlet eigenvalue to Schrodinger operator.2. Jimbo studied the existence of stable vortex solutions and the non-existence of permanent current in a convex domain to Ginzburg-Landau equation with magnetic effect. Tanaka constructed solutions with complex patterns to inhomogeneous Allen-Cahn equation and nonlinear Schrodinger equation. Murata studied the structure of positive solutions to elliptic equation of skew-product type and classifies the Martin boundary and Martin kernel completely.3. Mochizuki studied the inverse spectrum problem for Dirac operator and Sturm-Liouville operator by interior datas. Sakai studied the asymptotic behavior of the moving boundary for Hale-Shaw flow when the initial region has an angle in details.
1. Kurata研究了以下内容:(1)极小值的单调性分解为具有非均匀权重的一维Cahn-Hilliard能量以及由Chern-Simons-Higgs理论产生的非线性椭圆方程非拓扑解的存在性(2)薛定谔算子的第一狄利克雷特征值优化问题中障碍物的最优位置。2. Jimbo 研究了具有磁效应的 Ginzburg-Landau 方程稳定涡解的存在性和凸域中永久电流的不存在性。田中构造了非齐次 Allen-Cahn 方程和非线性薛定谔方程的复杂模式解。 Murata研究了斜积型椭圆方程正解的结构,并对Martin边界和Martin核进行了完整的分类。 3.望月新一利用内部数据研究了Dirac算子和Sturm-Liouville算子的逆谱问题。 Sakai详细研究了当初始区域有角度时Hale-Shaw流移动边界的渐近行为。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mochizuki(with I.A.Shishmarev): "Large time asymptotics of small solutions to generalized Kolmogorov-Petrovskii-Piskunov equation"Funkcialai Ekvasioj. 44. 99-117 (2001)
Mochizuki(与 I.A.Shishmarev):“广义 Kolmogorov-Petrovskii-Piskunov 方程小解的大时间渐近”Funkcialai Ekvasioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Kurata: "Existence of non-topological solutions for a nonlinear elliptic equation arising from Chern-Simons-Higgs theory in a general background metric"Duff. Integral Equations. 14. 925-935 (2001)
Kazuhiro Kurata:“在一般背景度量中,由 Chern-Simons-Higgs 理论产生的非线性椭圆方程的非拓扑解的存在”Duff。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kimie Nakashima: "Clustering layers and boundary layers in spatially inhomogeneous phase transition problems"Ann. Inst, H. Poincare Anal. Non Lineaire. 20. 107-143 (2003)
Kimie Nakashima:“空间非均匀相变问题中的聚类层和边界层”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kunio Hidano: "Scattering and self-similar solutions for the nonlinear wave equation"Differential and Integral Equations. 15. 405-462 (2002)
Kunio Hidano:“非线性波动方程的散射和自相似解”微分和积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
B.M.Harrell II(with P.Kroger, K.Kurata): "On the placement of an obstacle or a well so as to optimize the fumdamental eigenvalue"SIAM J Math. Ana.. 33. 240-259 (2001)
B.M.Harrell II(与 P.Kroger、K.Kurata):“关于放置障碍物或井以优化基本特征值”SIAM J Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURATA Kazuhiro其他文献
KURATA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURATA Kazuhiro', 18)}}的其他基金
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to variational problems, optimization problems, linear and nonlinear partial differential equations
研究变分问题、优化问题、线性和非线性偏微分方程的解结构
- 批准号:
18540191 - 财政年份:2006
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of solutions to Variational Problems, Inverse Problems and Partial Differential Equations
变分问题、反问题和偏微分方程解的结构研究
- 批准号:
15540177 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems
偏微分方程、变分问题和逆问题的解的研究。
- 批准号:
11640175 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Harmonic Analysis, Solutions to Variational Problems and Partial Differential Equa
调和分析、变分问题的解法和偏微分方程的研究
- 批准号:
09640208 - 财政年份:1997
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)