二重非線形放物型積分方程式に対する正則性理論と幾何学的熱流の正則解の大域存在

双非线性抛物型积分方程的正则理论与几何热流正则解的全局存在性

基本信息

  • 批准号:
    24K06798
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2024
  • 资助国家:
    日本
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

三沢 正史其他文献

ソボレフ流の大域存在と退化特異放物型方程式の正則性
索博列夫式的整体存在性与简并奇异抛物型方程的正则性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zurita Sebastian Elias Graiff;Kajiwara Kenji;Suzuki Toshitomo;三沢 正史;Shin Kiriki;宇田川誠一,井ノ口順一,梶原健司;三沢 正史;三沢 正史
  • 通讯作者:
    三沢 正史
Singularity and energy quantization for the m-harmonic map flow
m 谐波映射流的奇异性和能量量化
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ishikawa;Yasushi and Kunita;Hiroshi;三沢 正史
  • 通讯作者:
    三沢 正史
A doubly nonlinear degenerate singular parabolic equation and a nonlinear eigenvalue problem
双非线性简并奇异抛物线方程和非线性特征值问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kita;Naoyasu; Matsukuma;Taisei;太田雅人;Yoshihiro Ueda;三沢 正史
  • 通讯作者:
    三沢 正史
Global existence of the p-Sobolev flow
p-Sobolev 流的全局存在
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zurita Sebastian Elias Graiff;Kajiwara Kenji;Suzuki Toshitomo;三沢 正史
  • 通讯作者:
    三沢 正史
ソボレフ流と二重非線形放物型方程式について
关于索博列夫流和双非线性抛物型方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tuomo Kuusi;Masashi Misawa;Kenta Nakamura;Shin Kiriki;三沢 正史
  • 通讯作者:
    三沢 正史

三沢 正史的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('三沢 正史', 18)}}的其他基金

Nonlocal regularity for a geometric heat flow with fractional integral operator
具有分数积分算子的几何热流的非局部正则性
  • 批准号:
    21K03330
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
P-調和写像の正則性とエネルギー集中現象の解析
P谐波图规律及能量集中现象分析
  • 批准号:
    12740102
  • 财政年份:
    2000
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
P-調和写像型変分問題の研究と液晶の数理解析
液晶P调和变分问题及数学分析研究
  • 批准号:
    08740091
  • 财政年份:
    1996
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
粘性のある液晶の変分問題と退化発展方程式系の研究
粘性液晶变分问题及简并演化方程组研究
  • 批准号:
    07740099
  • 财政年份:
    1995
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
液晶の数理解析と変分問題の研究
液晶的数学分析和变分问题的研究
  • 批准号:
    06740106
  • 财政年份:
    1994
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了