Surface links in the form of coverings of a surface

表面覆盖物形式的表面链接

基本信息

  • 批准号:
    19K03464
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Torus-covering knot groups and their irreducible metabelian SU(2)-representations
环面覆盖结群及其不可约元超 SU(2) 表示
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村伊南沙
  • 通讯作者:
    中村伊南沙
中村伊南沙研究室ホームページ
中村稻佐实验室主页
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Torus-covering knot groups and their irreducible metabelian SU(2)- representations
环面覆盖结群及其不可约元超 SU(2)- 表示
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村伊南沙
  • 通讯作者:
    中村伊南沙
トーラス被覆結び目の結び目群のSU(2)表現について
关于环面覆盖结的结群的SU(2)表示
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村伊南沙
  • 通讯作者:
    中村伊南沙
トーラス被覆結び目の結び目群のSU(2)表現について
关于环面覆盖结的结群的SU(2)表示
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村伊南沙
  • 通讯作者:
    中村伊南沙
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nakamura Inasa其他文献

Nakamura Inasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

曲面結び目のプラット表示に関する分類問題とその応用
弯曲结平面表示的分类问题及其应用
  • 批准号:
    22KJ2189
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on 4-dimensional topology from the viewpoint of graphics and quandle theory
从图论和四维理论角度研究四维拓扑
  • 批准号:
    19H01788
  • 财政年份:
    2019
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ブレイドシステムのHurwitz同値不変量の列の構成と曲面ブレイドへの応用
叶片系统中Hurwitz等价不变量序列的构造及其在弯曲叶片中的应用
  • 批准号:
    19K03508
  • 财政年份:
    2019
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low-dimensional Topology: Knotted surfaces as real algebraic varieties
低维拓扑:作为实代数簇的结曲面
  • 批准号:
    18F18751
  • 财政年份:
    2018
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
低次元トポロジー、ブレイド群の一般化と4次元の結び目理論
低维拓扑、叶片组推广和4维结理论
  • 批准号:
    16F16793
  • 财政年份:
    2016
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了