Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects

协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案

基本信息

  • 批准号:
    2331003
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Society’s growing reliance on intelligent electronic systems risks significant disruption and loss from integrated circuit failure. Mitigating this threat requires building electronic systems that have been extensively tested to ensure that they are fully functional and defect-free. Modern integrated circuits contain billions of transistors that makes a complete exhaustive test of circuit functionality impractical and infeasible. Such tests are generated in practice, by considering the impact of likely manufacturing defects such as shorts and opens at various circuit locations, and developing a set of input test patterns whose correct binary output is altered by the existence of any targeted fault, identifying a bad integrated circuit. However, it is not practical to model and target all possible malfunctions in a large circuit, especially those that employ deeply scaled technologies, low supply voltages and high clock speeds. As a consequence, some faulty circuits inevitably escape post-manufacture testing because of incomplete test coverage and cause integrated circuit failure when deployed in operation. The goal of this research is to develop better and significantly more cost-effective test methods for state-of-the-art integrated circuits that can significantly impact the affordability and reliability of future computing systems that are increasingly pervasive in day-to-day societal applications and critical for national defense. The project will also help train new students in this strategic area, consistent with recent priorities for US leadership in semiconductor manufacturing. Traditional test methods for integrated circuits generate test inputs that explicitly detect faulty behavior only at the terminals of the standard cell building blocks and the interconnections between these cells. It is now widely known that detection of defective devices can be enhanced by considering defects within the cell circuitry as well. To do this, currently, faults are injected one at a time at likely defect locations in the cell layout, followed by exhaustive circuit simulation of all possible input patterns to obtain cell level tests. The generated tests are then delivered to cells embedded in logic circuitry using circuit-level test generation algorithms. This has major drawbacks. First, it is expensive to characterize the full range of resistive defects at every possible location in large cells using exhaustive circuit simulation. In practice, only ideal shorts and opens are simulated, leading to test escapes. Second, this does not consider the significant impact of a timing delay in one cell on the delays of other interconnected cells. Third, existing test generation techniques such as cell aware test, can increase test size and application time by greater than fivefold. To address these issues, this project seeks to develop a new testing methodology that avoids exhaustive simulation, but instead uses analytical reasoning to generate tests for cell internal defects. Algorithms based on this analytic approach can generate compact tests that cover defects spanning large resistance ranges without the need for repeated simulations. Additionally, the delay impact of a single defect that affects multiple cells can also be effectively captured, minimizing the escape of timing faults.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会对智能电子系统的日益依赖有可能导致综合电路故障造成重大破坏和损失。缓解这种威胁需要进行广泛测试的电子系统,以确保它们功能齐全且无缺陷。现代集成电路包含数十亿个晶体管,可以对电路功能进行完整的详尽测试,不切实际且不可行。通过考虑可能在各个电路位置打开等可能的制造缺陷的影响,并开发一组输入测试模式,从而在实践中生成了此类测试,这些缺陷会因存在任何目标故障而改变了正确的二进制输出,从而确定了不良的集成电路。但是,在大型电路中建模和针对所有可能的故障是不切实际的,尤其是那些员工深度缩放技术,低电源电压和高时钟速度的速度。结果,由于不完整的测试覆盖范围,某些故障电路不可避免地逃脱了生产后测试,并在运行中部署时会导致综合电路故障。这项研究的目的是为最先进的综合电路开发更好,更明显的具有成本效益的测试方法,这些电路可能会严重影响未来计算系统的可用性和可靠性,这些计算系统在日常社交应用中越来越普遍,并且对国防部进行至关重要。该项目还将帮助培训该战略领域的新学生,这与美国半导体制造业领导者的最新优先事项一致。集成电路的传统测试方法生成的测试输入,这些输入仅在标准细胞构建块的终端和这些单元之间的互连处明确检测出故障行为。现在众所周知,通过考虑细胞电路中的缺陷,可以增强故障设备的检测。为此,目前,在细胞布局中可能的缺陷位置一次注射故障,然后对所有可能的输入模式进行详尽的电路模拟,以获得细胞水平测试。然后,使用电路级测试生成算法将生成的测试传递到嵌入在逻辑电​​路中的单元。这有主要的缺点。首先,使用详尽的电路模拟来表征大单元中每个可能位置的全部电阻缺陷范围很昂贵。实际上,仅模拟理想的短裤和打开,导致测试逃逸。其次,这并不认为一个细胞中的正时延迟对其他相互连接的细胞的延迟的显着影响。第三,现有的测试生成技术(例如细胞意识测试)可以将测试尺寸和应用时间增加超过五倍。为了解决这些问题,该项目试图开发一种避免详尽模拟的新测试方法,而是使用分析推理来生成细胞内部缺陷的测试。基于这种分析方法的算法可以生成紧凑的测试,该测试涵盖了跨越大电阻范围的缺陷,而无需重复模拟。此外,也可以有效地捕获影响多个单元的单个缺陷的延迟影响,从而最大程度地减少了正时故障的逃脱。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估我们被认为是诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adit Singh其他文献

Adit Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adit Singh', 18)}}的其他基金

SHF: Small: Minimizing System Level Testing of Processor SOCs
SHF:小型:最大限度地减少处理器 SOC 的系统级测试
  • 批准号:
    1910964
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Targeting Hazard Activated Faults to Improve Open Defect Coverage of Scan Delay Tests
SHF:小型:针对危险激活的故障以提高扫描延迟测试的开放缺陷覆盖率
  • 批准号:
    1527049
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: TIMING VARIATION RESILIENT SIGNAL PROCESSING: HARDWARE-ASSISTED CROSS-LAYER ADAPTATION
合作研究:时序变化弹性信号处理:硬件辅助跨层自适应
  • 批准号:
    1319529
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Targeting Multi-Core Clock Performance Gains in the face of Extreme Process Variations
协作研究:面对极端的工艺变化,瞄准多核时钟性能增益
  • 批准号:
    0903449
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Silicon Calibrated Scan Based Timing Tests for Delay Defect Detection
用于延迟缺陷检测的基于硅校准扫描的时序测试
  • 批准号:
    0811454
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EHCS: Dynamic Vertically Integrated Power-Performance-Reliability Modulation in Embedded Digital Signal Processors
EHCS:嵌入式数字信号处理器中的动态垂直集成功率性能可靠性调制
  • 批准号:
    0834620
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR: Built-In Test of High Speed/RF Mixed Signal Electronics
ITR:高速/射频混合信号电子设备的内置测试
  • 批准号:
    0325426
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Wafer Oriented Trend Analysis for VLSI Test Opitmazation
面向晶圆的趋势分析,用于 VLSI 测试优化
  • 批准号:
    9912389
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Exploiting Defect Clustering Information in VLSI Testing
在 VLSI 测试中利用缺陷聚类信息
  • 批准号:
    9208929
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Initiation: Fault Tolerance Schemes for High Performance WSI Processor Arrays
研究启动:高性能WSI处理器阵列的容错方案
  • 批准号:
    8808325
  • 财政年份:
    1988
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

氨排放控制削减细颗粒物的有效性阈值动态变化研究
  • 批准号:
    42307151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于温度梯度及有效热惯量修正的绝热失控预测模型研究
  • 批准号:
    22308218
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维moiré材料体系的有效模型构建及新奇物性研究
  • 批准号:
    12374055
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于生物有效性的有机磷酸酯在土壤-植物体系中的释放迁移机理研究
  • 批准号:
    42373077
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
  • 批准号:
    10636681
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Identification of allosteric molecules for DOR-KOR heteromer-mediated peripheral analgesia
DOR-KOR 异聚体介导的外周镇痛变构分子的鉴定
  • 批准号:
    10608439
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
  • 批准号:
    10683486
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
  • 批准号:
    2242742
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了