Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water

合作研究:控制饮用水中碘消毒副产物的高级氧化工艺

基本信息

  • 批准号:
    2308711
  • 负责人:
  • 金额:
    $ 26.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Chemical oxidants such as chlorine are widely utilized as disinfectants to inactivate waterborne pathogens in conventional water treatment processes. However, chlorine can react with various background constituents in drinking water sources (e.g., natural organic matter, bromide, and iodide) to form undesirable and toxic disinfection byproducts (DBPs). Currently, the US EPA regulates the maximum contaminant levels (MCLs) of 11 DBPs in drinking water including 4 trihalomethanes (THMs), 5 haloacetic acids (HAAs), bromate (BrO-3), and chlorite (ClO2-). Unregulated iodinated DBPs (I-DBPs) are receiving increased attention as they are significantly more toxic than the regulated DBPs and can damage cells and DNA. I-DBPs are formed when chemical oxidants such as chlorine react with iodine and iodinated compounds (e.g., iodinated X-ray contrast media) during the disinfection of drinking water sources. Thus, the oxidation and conversion of iodine and iodinated compounds (ICs) to iodate (IO3–), a nontoxic source of iodine nutritional trace element, has emerged as a promising unit process to control and mitigate the formation of I-DBPs in water treatment systems. However, the ability of current water treatment processes to efficiently convert iodine and ICs to iodate suffer from several challenges including the concurrent oxidation of bromide to bromate and toxic brominated DBPs, and the incomplete transformation of iodine/ICs to iodate which can also lead to the formation of I-DBPs and other regulated DBPs in the final product water. The goal of this collaborative project is to explore the development of advanced oxidation processes (AOPs) and integrated treatment trains that can efficiently oxidize and convert iodine and ICs to iodate while minimizing and preventing the formation of toxic I-DBPs and regulated DBPs in the product drinking water. The successful completion of this project will benefit society through the development of new fundamental knowledge that could guide the design and deployment of more effective water treatment processes and systems for mitigating and eliminating and the formation of I-DBPs during water disinfection. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate at the South Dakota School of Mines and Technology and one graduate student at South Dakota State University. Iodinated disinfection byproducts (I-DBPs) formed in drinking water treatment are highly toxic at low concentrations and have been found to be cytotoxic and genotoxic. Iodide (I–) and iodinated X-ray contrast media (ICM) are the two most common iodine sources that can react with disinfectants (e.g., chlorine and chloramines) to produce I-DBPs during drinking water treatment. The oxidation and conversion of iodine and iodinated compounds such as ICM to iodate (IO3–), a nontoxic source of iodine nutritional trace element, has emerged as promising unit process to control and mitigate the formation of I-DBPs in water treatment systems. The overarching goal of this project is to advance the fundamental science and engineering knowledge required to control emerging I-DBPs and regulated DBPs in drinking water treatment through careful selection and optimization of advanced oxidation processes (AOPs) and integration of the AOPs with conventional processes. The core guiding hypothesis of the proposed research is that the successful control of emerging I-DBPs and regulated DBPs in drinking water treatment systems would require the efficient oxidation and conversion of iodine species and iodinated compounds to iodate, the careful management of bromide formation, and the partial (decent) removal of NOM (Natural Organic Matter), a DBP precursor, prior to disinfection. The specific objectives of the research are to 1) to investigate the utilization of AOPs, including ferrate (Fe[VI]), ozone (O3), UV photolysis, and UV photolysis with O3, to optimize the oxidation of iodine and ICM to iodate; 2) investigate the integration of AOPs with conventional processes, including chlorination, and activated carbon sorption, to minimize the formation of both I-DBPs and regulated DBPs; and 3) develop analytical methods for measurement of iodine species and I-DBPs to unravel and quantify the transformation pathways of iodine and ICM to I-DBPs and total organic iodine. The successful completion of this project has the potential to advance the fundamental understanding of the reactivity and transformations of inorganic and organic iodine species/compounds by AOPs to guide the design and development of iodine source-specific treatment processes for effective mitigation of both I-DBPs and regulated DBPs in water treatment systems. To implement the education and training goals of this project, the Principal Investigators (PIs) propose to leverage existing programs at the South Dakota School of Mines and Technology (SDSMT) and South Dakota State University to recruit and mentor female students to work on the project. In addition, the PIs plan to interact and collaborate with drinking water treatment professionals to address water quality challenges in South Dakota, engage in local community outreach events, and collaborate with the SDSMT Ivanhoe International Center to engage and mentor international students from the African continent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在常规水处理过程中,化学氧化剂(例如氯)被广泛用作消毒剂。但是,氯可以与饮用水源(例如天然有机物,溴化物和碘化物)中的各种背景成分反应,形成不良和有毒的消毒副产品(DBPS)。目前,美国EPA在饮用水中调节11 dbps的最大污染物水平(MCL),包括4个三脑甲烷(THMS),5个卤乙酸(HAAS),溴酸盐(BRO-3)和氯酸盐(Clo2-)。不受管制的碘DBP(I-DBP)受到了越来越多的注意力,因为它们的毒性明显比受调节的DBP的毒性明显高,并且会损害细胞和DNA。当化学氧化剂(例如氯与碘和碘化化合物(例如,碘化的X射线对比介质))在饮用水源消毒期间,I-DBP会形成。这是碘和碘化化合物(ICS)的氧化和转化,碘(IO3-)是碘营养痕量元素的无毒来源,已成为控制和减轻水处理系统中I-DBP形成的有望单位过程。但是,当前水处理过程有效转化碘和IC碘化的能力遇到了几个挑战,包括将溴化物的并发氧化与溴和有毒的溴化溴DBP的氧化,以及将碘/ICS对碘化的不完整转化,也可能导致I-DBPS的形成以及其他调节的DBP中的其他最终产品。该协作项目的目的是探索高级氧化过程(AOP)和综合治疗列车的开发,这些列车可以有效地氧化并转化碘和IC,同时最大程度地减少和防止有毒的I-DBP的形成并在产品饮用水中调节的DBP。成功完成该项目将通过发展新的基本知识来使社会受益,这些知识可以指导和部署更有效的水处理过程和系统,以减轻和消除水中的I-DBP,并形成I-DBP。将通过学生的教育和培训来实现社会的其他好处,包括在南达科他州矿业和技术学校的一名研究生和一名本科生的心理以及南达科他州立大学的一名研究生。在饮用水处理中形成的碘化消毒副产品(I-DBP)在低浓度下剧毒,并且被发现是细胞毒性和遗传毒性的。碘化物(I-)和碘化X射线对比介质(ICM)是两个最常见的碘来源,可以与消毒剂(例如氯和氯胺)反应,以在饮用水处理过程中产生I-DBP。碘和碘化化合物的氧化和转化,例如ICM碘化物(IO3-),这是碘营养痕量元素的无毒来源,已作为承诺的单位过程出现,以控制和减轻水处理系统中I-DBP的形成。该项目的总体目标是通过仔细选择和优化高级氧化过程(AOP)以及将AOP与常规过程整合到饮用水处理中所需的基本科学和工程知识,以控制新出现的I-DBP和调节DBP。拟议研究的核心指导假设是,在饮用水处理系统中,成功控制了新出现的I-DBP和受调节的DBP,需要有效地氧化和转化碘和碘化化合物,以碘的认真管理,对溴化物的形成的仔细管理以及部分(正常的)nom(自然有机物),以前的dbp presforsor,以前。研究的具体目标是1)研究AOP的利用,包括铁酸酯(Fe [Vi]),臭氧(O3),紫外光解和O3的UV光解,以优化碘和ICM的氧化氧化; 2)研究AOP与包括氯化和活性炭焊接在内的常规过程的整合,以最大程度地减少I-DBP和受调节DBP的形成; 3)开发用于测量碘和I-DBP的分析方法,以阐明和量化碘和ICM对I-DBPS和总有机碘的转化途径。该项目的成功完成有可能通过AOPS提高对无机和有机碘的反应性和转化的基本理解,以指导水处理系统中I-DBP和受调节的DBP的碘特异性治疗过程的设计和开发。为了实施该项目的教育和培训目标,首席研究人员(PIS)提案要利用南达科他州矿业与技术学院(SDSMT)和南达科他州立大学的现有计划来招募和精神女学生来从事该项目。 In addition, the PIs plan to interact and collaborate with drinking water treatment professionals to address water quality challenges in South Dakota, engage in local community outreach events, and collaborate with the SDSMT Ivanhoe International Center to engage and mental international students from the African continent.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Ye其他文献

Electrochemically Derived Graphene-Like Carbon Film as a Superb Substrate for High-Performance Aqueous Zn-Ion Batteries
电化学衍生的类石墨烯碳膜作为高性能水系锌离子电池的优质基底
  • DOI:
    10.1002/adfm.201907120
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Wu Yunzhao;Wang Mingchao;Tao Ye;Zhang Kai;Cai Molang;Ding Yong;Liu Xuepeng;Hayat Tasawar;Alsaedi Ahmed;Dai Songyuan
  • 通讯作者:
    Dai Songyuan
A review of machine learning algorithms for environmental microbiology
  • DOI:
    10.13343/j.cnki.wsxb.20220389
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen He;Tao Ye;Xing Peng
  • 通讯作者:
    Xing Peng
A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis.
一种基于生物材料的疗法,使用透明质酸钠/生物玻璃复合水凝胶来治疗口腔粘膜下纤维化。
  • DOI:
    10.1016/j.actbio.2022.12.006
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenxing Guo;Zhaowenbin Zhang;Jianfei Yan;Haoqing Xu;Shuyan Wang;Tao Ye;Xiaoxiao Han;Wanrong Wang;Yue Wang;Jialu Gao;Lina Niu;Jiang Chang;Kai Jiao
  • 通讯作者:
    Kai Jiao
Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature
伯胺在低温前驱体转化为半导体纳米晶体中作用的机理研究
  • DOI:
    10.1002/anie.201403714
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Kui;Liu Xiangyang;Chen Queena Y.;Yang Huaqing;Yang Mingli;Wang Xinqin;Wang Xin;Cao Hong;Whitfield Dennis M.;Hu Changwei;Tao Ye
  • 通讯作者:
    Tao Ye
VUV-UV-vis photoluminescence of Ce3+ and Ce3+-Eu2+ energy transfer in Ba2MgSi2O7
Ba2MgSi2O7 中 Ce3 和 Ce3 -Eu2 能量转移的 VUV-UV-vis 光致发光
  • DOI:
    10.1016/j.jlumin.2017.01.027
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yan Jing;Liu Chunmeng;Zhou Weijie;Huang Yan;Tao Ye;Liang Hongbin
  • 通讯作者:
    Liang Hongbin

Tao Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Ye', 18)}}的其他基金

Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports
用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用
  • 批准号:
    2327715
  • 财政年份:
    2024
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Probing Contrast Mechanisms of Super-resolution Atomic Force Microscopy for Imaging Multifunctional Self-assembled Monolayers
超分辨率原子力显微镜成像多功能自组装单层膜的对比机制探索
  • 批准号:
    1808213
  • 财政年份:
    2018
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Directing and Probing DNA Origami Self-Assembly on Dynamic Surfaces
指导和探测动态表面上的 DNA 折纸自组装
  • 批准号:
    1410199
  • 财政年份:
    2014
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Continuing Grant
EAGER: Dynamic Surface Interactions for Single Molecule Imaging of Biochemical Reactions
EAGER:生化反应单分子成像的动态表面相互作用
  • 批准号:
    1361066
  • 财政年份:
    2013
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先进堆叠互补场效应晶体管的抗温度涨落特性及增强方法研究
  • 批准号:
    62304263
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Workshop on Advanced Automated Systems, Contestability, and the Law
合作研究:会议:先进自动化系统、可竞争性和法律研讨会
  • 批准号:
    2349804
  • 财政年份:
    2023
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching Modules
协作研究:SaTC:EDU:创建 Windows 高级内存损坏攻击和防御教学模块
  • 批准号:
    2325451
  • 财政年份:
    2023
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 26.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了