Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports

用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用

基本信息

  • 批准号:
    2327715
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Toxic oxyanions such as nitrate (NO3−) and perchlorate (ClO4−) are persistent pollutants that have been detected in groundwater, surface water, and drinking water sources in the United States and worldwide. The consumption of drinking water containing toxic oxyanions can adversely impact human health. Ion exchange (IX) and reverse osmosis (RO) are the best commercially available technologies for removing toxic oxyanions from drinking water sources. However, IX and RO do not destroy contaminants. In addition, they generate residuals including concentrated waste brines that need to be treated and/or disposed of. Water treatment by catalytic hydrogenation has emerged as a promising technology that can rapidly and effectively destroy toxic oxyanions in contaminated aqueous solutions including concentrated waste brines. The most effective oxyanion hydrogenation catalysts (e.g., Pd) are in the form of nanoparticles. Anchoring catalytic nanoparticles on supports such as activated carbon can facilitate their use in water treatment. In this project, the Principal Investigators (PIs) propose to carry out a fundamental study of the activity and reactivity of Pd nanoparticles immobilized onto supports that contain nitrogen groups in aqueous solutions and brines contaminated by toxic oxyanions with the goal of improving their performance. The successful completion of this research will benefit society through the development of new fundamental knowledge to advance the design and development of more efficient and cost-effective oxyanion hydrogenation catalysts for water treatment. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate student at the South Dakota School of Mines and Technology and one postdoctoral researcher at the University of Alabama.Palladium (Pd) nanoparticles have emerged as promising catalysts for reducing toxic oxyanions such as nitrate (NO3−) in aqueous solutions/brines and converting them to harmless by-products such as dinitrogen (N2) gas. Pd nanocatalysts are immobilized on support materials to 1) reduce nanoparticle aggregation and leaching and 2) facilitate catalyst handling and reuse. The presence of nitrogen-containing groups (e.g., amines) on the supports of Pd nanocatalysts have been found to significantly enhance catalyst performance (including activity, selectivity, and stability) during the hydrogenation of oxyanions in aqueous solutions. However, a fundamental understanding of the role of nitrogen-containing groups (NCGs) on the structure and performance of Pd hydrogenation nanocatalysts has remained elusive. To address these knowledge gaps, the Principal Investigators (PIs) of this project propose to carry out fundamental studies of the structure and performance of Pd nanocatalysts immobilized onto supports with NCGs. The specific objectives of the research are to 1) characterize and unravel the relationships between NCG support and catalyst structure and physicochemical properties; 2) investigate the impact of NCG support on the performance of Pd nanocatalysts for the reduction and conversion of oxyanions in model aqueous solutions and complex water matrices using hydrogen (H2) as reducing agent ; and 3) leverage the data collected in this project to develop machine learning (ML)-informed life cycle assessment (LCA) to guide catalyst design, synthesis, and optimization. The successful completion of this project has the potential to advance the practical implementation of Pd-based catalysts and reactors for the treatment of drinking water sources and concentrated waste brines contaminated with toxic oxyanions. To implement the education and training goals of the project, the PIs propose to leverage existing programs at the South Dakota School of Mines and Technology and the University of Alabama to 1) recruit and mentor graduate and undergraduate students from underrepresented groups to work on the project and 2) develop and implement outreach activities to advance diversity, equity, and inclusion in STEM education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硝酸盐(NO3-)和高氯酸盐(Clo4-)等有毒氧是在美国和全球范围内检测到的持续污染物。消耗含有有毒氧的饮用水会对人类健康产生不利影响。离子交换(IX)和反渗透(RO)是最佳的市售技术,用于去除饮用水源的有毒氧气。但是,IX和RO不会破坏污染物。此外,它们产生残留物,包括需要处理和/或处置的浓缩废物盐水。通过催化氢化的水处理已成为一种承诺技术,可以快速有效地破坏受污染的水溶液(包括浓缩废物盐水)的有毒氧。最有效的氧气氢化催化剂(例如PD)是纳米颗粒的形式。将催化纳米颗粒锚定在诸如活化碳之类的载体上可以促进其在水处理中的使用。在该项目中,首席研究人员(PIS)提出的建议是对固定在水溶液中含有氮基团的PD纳米颗粒的活性和反应性的基本研究,并在水溶液中含有氮基团,并以有毒氧的污染,目的是提高其性能。这项研究的成功完成将通过发展新的基本知识来使社会受益,从而推动设计和开发更有效,更具成本效益的氧合催化剂以进行水处理。将通过学生的教育和培训来实现社会的其他好处,包括在南达科他州矿业和技术学校的一名研究生和一名本科生的心理,以及一位阿拉巴马大学(PD)纳米粒子的博士后研究员,如降低了较低的氧化溶液(无元素)的催化剂(无效)(PD)纳米粒子的纳米粒子(均未降低)。无害的副产品,例如二氮(N2)气体。 PD纳米催化剂被固定在支撑材料上1)减少纳米颗粒聚集并离开以及2)促进催化剂处理和重复使用。在水溶液中氧化过程中,在PD纳米催化剂支持上的含氮基(例如胺)的存在可显着增强催化剂性能(包括活性,选择性和稳定性)。但是,对含氮基团(NCG)在PD氢化纳米催化剂的结构和性能方面的作用的基本了解仍然难以捉摸。为了解决这些知识差距,该项目建议的主要研究人员(PIS)对PD纳米催化剂的结构和性能进行了基本研究,该研究固定在NCGS的支持上。研究的具体目标是1)表征和解开NCG支持与催化剂结构与物理特性之间的关系; 2)研究NCG支持对PD纳米催化剂的性能对使用氢(H2)作为还原剂的模型水溶液和复杂水材料的氧气的降低和转化的影响; 3)利用该项目中收集的数据来开发机器学习(ML)信息周期评估(LCA)来指导催化剂设计,合成和优化。该项目的成功完成有可能进步基于PD的催化剂和反应堆的实际实施,以治疗饮用水源和浓缩废物盐水,并受到有毒氧的污染。为了实施该项目的教育和培训目标,PIS提议在南达科他州矿业和技术学院以及阿拉巴马大学的现有计划中,招募和精神学生以及来自代表性不足的小组的招聘和精神学生以及在项目上工作的学生和本科生在项目上工作和2)开发和实施外界活动,以提高范围的活动,以促进多样性,公平和纳入sTEM FARDESS。基金会的智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Ye其他文献

Proton Inserted Manganese Dioxides as a Reversible Cathode for Aqueous Zn-Ion Batteries
插入质子的二氧化锰作为水系锌离子电池的可逆阴极
  • DOI:
    10.1021/acsaem.9b01554
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Wu Yunzhao;Zhang Kai;Chen Shengbin;Liu Yu;Tao Ye;Zhang Xianfu;Ding Yong;Dai Songyuan
  • 通讯作者:
    Dai Songyuan
Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai
从上海次生无机气溶胶季节变化洞察不同硝酸盐形成机制
  • DOI:
    10.1016/j.atmosenv.2016.09.012
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Tao Ye;Ye Xingnan;Ma Zhen;Xie Yuanyuan;Wang Ruyu;Chen Jianmin;Yang Xin;Jiang Shuqin
  • 通讯作者:
    Jiang Shuqin
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
GGCMI 第二阶段的统计模拟器:作物产量逐年变化对二氧化碳、温度、水和氮扰动的响应
  • DOI:
    10.5194/gmd-16-7203-2023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Weihang Liu;Tao Ye;Christoph Müller;Jonas Jägermeyr;J. Franke;Haynes Stephens;Shuo Chen
  • 通讯作者:
    Shuo Chen
Minimizing packet loss by optimizing OSPF weights using online simulation
使用在线模拟优化 OSPF 权重,最大限度地减少数据包丢失
Electrochemically Derived Graphene-Like Carbon Film as a Superb Substrate for High-Performance Aqueous Zn-Ion Batteries
电化学衍生的类石墨烯碳膜作为高性能水系锌离子电池的优质基底
  • DOI:
    10.1002/adfm.201907120
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Wu Yunzhao;Wang Mingchao;Tao Ye;Zhang Kai;Cai Molang;Ding Yong;Liu Xuepeng;Hayat Tasawar;Alsaedi Ahmed;Dai Songyuan
  • 通讯作者:
    Dai Songyuan

Tao Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Ye', 18)}}的其他基金

Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water
合作研究:控制饮用水中碘消毒副产物的高级氧化工艺
  • 批准号:
    2308711
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Probing Contrast Mechanisms of Super-resolution Atomic Force Microscopy for Imaging Multifunctional Self-assembled Monolayers
超分辨率原子力显微镜成像多功能自组装单层膜的对比机制探索
  • 批准号:
    1808213
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Directing and Probing DNA Origami Self-Assembly on Dynamic Surfaces
指导和探测动态表面上的 DNA 折纸自组装
  • 批准号:
    1410199
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Dynamic Surface Interactions for Single Molecule Imaging of Biochemical Reactions
EAGER:生化反应单分子成像的动态表面相互作用
  • 批准号:
    1361066
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

近常压下三元超导氢化物的结构设计与物性研究
  • 批准号:
    12304031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无金属氮杂环分子催化材料设计及电催化乙炔半氢化性能研究
  • 批准号:
    52373308
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高压下新型镧系富氢化合物超导体的理论设计
  • 批准号:
    12374009
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于电场诱导氧离子迁移的稀土金属含氧氢化物光致变色复合结构设计与性能研究
  • 批准号:
    52302370
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
镁镍基氢化物表界面设计及储氢性能调控
  • 批准号:
    52301277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New precursors for diverse radical reactions enabled by potent photoreductants
强效光还原剂实现多种自由基反应的新前体
  • 批准号:
    10600016
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10440504
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10275111
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
  • 批准号:
    10608144
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了