Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
基本信息
- 批准号:2212371
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Emerging graph learning techniques have shown promising results for various important applications such as community detection, drug discovery, and electronic design automation (EDA). However, even the state-of-the-art graph learning methods cannot scale to large data sets due to their high algorithm complexity. For example, the latest graph neural network (GNN) algorithms collectively aggregate feature information from the neighborhood of each node, which not only drastically increases the number of computations among nodes but also leads to high memory usage for storing the intermediate results. Hence most graph learning algorithms cannot efficiently handle large-scale problems due to their high computation and storage costs, not to mention the real-world graphs that may involve billions of edges.This project aims at addressing the most pressing challenges in modern graph learning tasks by investigating high-performance spectral graph algorithms and systems based on the latest theoretical breakthroughs. Unlike prior theoretical studies on spectral graph theory that put less focus on practical algorithm implementations and applications, the investigators of this project will develop practically-efficient spectral graph compression algorithms to boost the efficiency and solution quality of existing graph learning methods through algorithm and system co-optimizations by taking advantage of the latest heterogeneous computing devices, such as GPUs, FPGAs, and computational storage devices. The outcome of this project will potentially advance the state of the art in spectral graph theory, machine learning, data analytics, EDA, as well as high-performance computing. This project is also likely to spark new research in other related computer science and engineering fields such as complex system/network modeling, computational biology, precision medicine, and transportation networks. The investigators will partner with the STEM ambassador program at Stevens, and the Diversity Programs in Engineering office at Cornell to recruit highly diversified undergraduate and graduate students to participate in this project, while the latest research results will be integrated into several graduate and upper-division undergraduate courses to prepare a new generation of researchers and practitioners in high-performance machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的图学习技术在社区检测、药物发现和电子设计自动化 (EDA) 等各种重要应用中显示出了有希望的结果。然而,即使是最先进的图学习方法也无法扩展到大型数据集,因为其算法复杂度很高。例如,最新的图神经网络(GNN)算法集体聚合每个节点邻域的特征信息,这不仅大大增加了节点之间的计算量,而且导致存储中间结果的内存使用率很高。因此,大多数图学习算法由于计算和存储成本较高而无法有效处理大规模问题,更不用说可能涉及数十亿条边的现实世界图。该项目旨在解决现代图学习任务中最紧迫的挑战通过研究基于最新理论突破的高性能谱图算法和系统。与之前的谱图理论研究较少关注实际算法实现和应用不同,该项目的研究人员将开发实用高效的谱图压缩算法,通过算法和系统合作来提高现有图学习方法的效率和解质量。 -利用最新的异构计算设备(例如 GPU、FPGA 和计算存储设备)进行优化。该项目的成果将有可能推动谱图理论、机器学习、数据分析、EDA 以及高性能计算领域的最新技术发展。该项目还可能引发其他相关计算机科学和工程领域的新研究,例如复杂系统/网络建模、计算生物学、精准医学和交通网络。研究人员将与史蒂文斯大学的STEM大使项目和康奈尔大学工程办公室多样性项目合作,招募高度多元化的本科生和研究生参与该项目,同时最新的研究成果将被整合到多个研究生和高年级学生中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks
GARNET:稳健且可扩展的图神经网络的降阶拓扑学习
- DOI:
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Chenhui Deng;Xiuyu Li;Zhuo Feng;Zhiru Zhang
- 通讯作者:Zhiru Zhang
An Intermediate Language for General Sparse Format Customization
通用稀疏格式定制的中间语言
- DOI:10.1109/lca.2023.3262610
- 发表时间:2023-01
- 期刊:
- 影响因子:2.3
- 作者:Liu, Jie;Zhao, Zhongyuan;Ding, Zijian;Brock, Benjamin;Rong, Hongbo;Zhang, Zhiru
- 通讯作者:Zhang, Zhiru
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiru Zhang其他文献
Behavioral synthesis with activating unused flip-flops for reducing glitch power in FPGA
通过激活未使用的触发器来降低 FPGA 中的毛刺功率的行为综合
- DOI:
10.1109/aspdac.2008.4483919 - 发表时间:
2008-01-21 - 期刊:
- 影响因子:0
- 作者:
C. Hsieh;J. Cong;Zhiru Zhang;Shih - 通讯作者:
Shih
Building Efficient Deep Neural Networks With Unitary Group Convolutions
使用酉群卷积构建高效的深度神经网络
- DOI:
10.1109/cvpr.2019.01156 - 发表时间:
2018-11-19 - 期刊:
- 影响因子:0
- 作者:
Ritchie Zhao;Yuwei Hu;Jordan Dotzel;Christopher De Sa;Zhiru Zhang - 通讯作者:
Zhiru Zhang
A Tensor Processing Framework for CPU-Manycore Heterogeneous Systems
CPU众核异构系统的张量处理框架
- DOI:
10.1109/tcad.2021.3103825 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Lin Cheng;Peitian Pan;Zhongyuan Zhao;Krithik Ranjan;Jack Weber;B;hav Veluri;hav;Seyed Borna Ehsani;Max Ruttenberg;Dai Cheol Jung;Preslav Ivanov;D. Richmond;M. Taylor;Zhiru Zhang;C. Batten - 通讯作者:
C. Batten
Image classification with spectral and texture features based on SVM
基于SVM的光谱和纹理特征图像分类
- DOI:
10.1109/geoinformatics.2010.5567663 - 发表时间:
2010-06-18 - 期刊:
- 影响因子:0
- 作者:
Fen Chen;Zhiru Zhang;Dongmei Yan - 通讯作者:
Dongmei Yan
Architecture and compilation for data bandwidth improvement in configurable embedded processors
可配置嵌入式处理器中数据带宽改进的架构和编译
- DOI:
10.5555/1129601.1129639 - 发表时间:
2005-05-31 - 期刊:
- 影响因子:0
- 作者:
J. Cong;Guoling Han;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Zhiru Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiru Zhang', 18)}}的其他基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2019306 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Architectural Synthesis for Programmable Accelerators
SHF:小型:可编程加速器的架构综合
- 批准号:
1909661 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
- 批准号:
1723715 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
STARSS: Small: Automatic Synthesis of Verifiably Secure Hardware Accelerators
STARSS:小型:自动合成可验证安全的硬件加速器
- 批准号:
1618275 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Synthesizing Highly Efficient Hardware Accelerators for Irregular Programs: A Synergistic Approach
职业:为不规则程序合成高效硬件加速器:一种协同方法
- 批准号:
1453378 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant