Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale

协作研究:SHF:小型:LEGAS:大规模学习演化图

基本信息

  • 批准号:
    2331301
  • 负责人:
  • 金额:
    $ 30.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Graph Neural Networks (GNNs) are an emerging class of deep learning models on graphs, with many successful applications, such as, recommendation systems, drug discovery, social network analysis, and code vulnerability detection. However, the computation for GNNs faces a low efficiency problem as they involve complex matrix and vector operations. Further, when applied to graphs that are dynamically changing, the efficiency issue exacerbates. This project pioneers the effort of developing efficient GNN algorithms and computation systems for both static and dynamic graphs that can take advantage of world-class Graphics Processing Unit (GPU) computing facilities. This project contributes to the growing national need for professionals in machine learning and computation systems. This project produces a high-performance software library that serves as a foundational tool for fellow science and engineering practitioners from academia, national laboratories, and industry. Additionally, educational efforts are made to integrate the research findings into graduate and undergraduate curriculum development. Outreach and educational activities are conducted to promote the participation of K-12, undergraduate, female, and underrepresented minorities. The overarching goal of this project is to design an efficient GNN framework via algorithm and system co-design for both static and dynamic graphs. Towards that, this project designs three synergistic research thrusts. Specifically, Thrust 1 improves the efficiency from the algorithm level by designing novel GNN algorithms that are efficient, allow the entire graph to be retained, and offer convergence guarantees. Thrust 2 advances the system performance by designing efficient computation techniques on GPUs with efficient workload scheduling and reduced synchronization overhead. In addition, Thrust 3 incorporates the techniques in Thrusts 1 and 2, and designs novel strategies to address the unique algorithm and computation challenges in dynamic graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络(GNN)是一类新兴的图深度学习模型,具有许多成功的应用,例如推荐系统、药物发现、社交网络分析和代码漏洞检测。然而,GNN 的计算面临着低效率的问题,因为它们涉及复杂的矩阵和向量运算。此外,当应用于动态变化的图表时,效率问题会加剧。该项目开创了为静态和动态图开发高效 GNN 算法和计算系统的先河,这些算法和计算系统可以利用世界一流的图形处理单元 (GPU) 计算设施。该项目有助于满足国家对机器学习和计算系统专业人员日益增长的需求。该项目创建了一个高性能软件库,为学术界、国家实验室和工业界的科学和工程从业者提供基础工具。此外,教育部门还努力将研究成果纳入研究生和本科生课程的开发中。开展外展和教育活动以促进 K-12、本科生、女性和代表性不足的少数群体的参与。该项目的总体目标是通过静态和动态图的算法和系统协同设计来设计一个高效的 GNN 框架。为此,该项目设计了三个协同研究重点。具体来说,Thrust 1 通过设计高效的新型 GNN 算法,从算法层面提高了效率,允许保留整个图,并提供收敛保证。 Thrust 2 通过在 GPU 上设计高效的计算技术、高效的工作负载调度和减少的同步开销来提高系统性能。此外,Thrust 3融合了Thrusts 1和2中的技术,并设计了新颖的策略来解决动态图中独特的算法和计算挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuede Ji其他文献

SWARMGRAPH: Analyzing Large-Scale In-Memory Graphs on GPUs
SARMGRAPH:分析 GPU 上的大规模内存中图
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis
光明会:解释用于网络安全分析的图神经网络
Discovering unknown advanced persistent threat using shared features mined by neural networks
使用神经网络挖掘的共享特征发现未知的高级持续威胁
  • DOI:
    10.1016/j.comnet.2021.107937
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Longkang Shang;Dong Guo;Yuede Ji;Qiang Li
  • 通讯作者:
    Qiang Li
Vestige: Identifying Binary Code Provenance for Vulnerability Detection
Vestige:识别二进制代码来源以进行漏洞检测
iSpan: Parallel Identification of Strongly Connected Components with Spanning Trees
iSpan:使用生成树并行识别强连通分量

Yuede Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuede Ji', 18)}}的其他基金

CICI: UCSS: Secure Containers in High-Performance Computing Infrastructure
CICI:UCSS:高性能计算基础设施中的安全容器
  • 批准号:
    2319975
  • 财政年份:
    2023
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 30.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了