Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption

合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理

基本信息

  • 批准号:
    2412357
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Along with the evolution of artificial intelligence, privacy-preserving machine learning has emerged as an important and promising technique for protecting user-data privacy in cloud applications. Among the existing approaches, fully homomorphic encryption (FHE) based methods allow machine learning algorithms to be computed on encrypted data, while no original data information is leaked. This project addresses ciphertext-ciphertext FHE that preserves the privacy of both the user and model providers. This project aims to improve the hardware efficiency of ciphertext-ciphertext FHE-based neural network inference by orders of magnitude through algorithm-hardware co-optimization. This project yields a novel framework for ensuring the root of trust in cloud computing and cryptosystems to meet the future needs of both commercial products and national defense.This project develops efficient and scalable hardware architectures for privacy-preserving neural network inference based on ciphertext-ciphertext FHE. This project leverages scheme switching - using arithmetic-based schemes for linear functions and Boolean logic-based schemes for non-linear functions - to accelerate the neural network computations. Research thrusts include: a) Designing efficient fundamental hardware building blocks with high scalability over word-length of modulus and degree of polynomial for privacy-preserving neural network, i.e., polynomial multipliers, by employing novel reconfigurable and pipelining framework and exploiting special primes to perform fast modular reduction; b) Further improving the efficiency of polynomial multiplier designs by utilizing a divide and conquer strategy based on a novel parallel filter technique; c) Developing a reconfigurable and neural network friendly FHE architecture using scheme switching; and d) Designing an efficient accelerator of privacy-preserving neural network inference with ciphertext-ciphertext operations via scheme switching that protects the privacy of both the user and model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能的发展,隐私保护机器学习已成为保护云应用程序中用户数据隐私的重要且有前途的技术。在现有的方法中,基于全同态加密(FHE)的方法允许机器学习算法在加密数据上进行计算,同时不会泄露原始数据信息。该项目致力于保护用户和模型提供者的隐私的密文-密文 FHE。该项目旨在通过算法-硬件协同优化,将基于密文-密文FHE的神经网络推理的硬件效率提高几个数量级。该项目产生了一个新颖的框架,用于确保云计算和密码系统的信任根源,以满足商业产品和国防的未来需求。该项目为基于密文-密文的隐私保护神经网络推理开发高效且可扩展的硬件架构FHE。该项目利用方案切换(针对线性函数使用基于算术的方案,针对非线性函数使用基于布尔逻辑的方案)来加速神经网络计算。研究重点包括: a) 通过采用新颖的可重构和流水线框架并利用特殊素数来执行,设计高效的基础硬件构建块,该构建块在模数字长和多项式次数上具有高可扩展性,用于隐私保护神经网络,即多项式乘法器快速模块化缩减; b) 通过利用基于新型并行滤波器技术的分而治之策略,进一步提高多项式乘法器设计的效率; c) 使用方案切换开发可重构且神经网络友好的 FHE 架构; d) 设计一种通过方案切换进行密文-密文运算的隐私保护神经网络推理的高效加速器,保护用户和模型的隐私。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KyberMat: Efficient Accelerator for Matrix-Vector Polynomial Multiplication in CRYSTALS-Kyber Scheme via NTT and Polyphase Decomposition
KyberMat:通过 NTT 和多相分解实现 CRYSTALS-Kyber 方案中矩阵向量多项式乘法的高效加速器
PaReNTT: Low-Latency Parallel Residue Number System and NTT-Based Long Polynomial Modular Multiplication for Homomorphic Encryption
PaReNTT:用于同态加密的低延迟并行残数系统和基于 NTT 的长多项式模乘法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Lao其他文献

NL2GDPR: Automatically Develop GDPR Compliant Android Application Features from Natural Language
NL2GDPR:从自然语言自动开发符合 GDPR 的 Android 应用程序功能
Reconfigurable architectures for silicon Physical Unclonable Functions
硅物理不可克隆功能的可重构架构
Device-Specific Signature Generation Technique for Smart Grid Device
智能电网设备的设备特定签名生成技术
Statistical Analysis of MUX-Based Physical Unclonable Functions
基于 MUX 的物理不可克隆函数的统计分析
Homomorphic Evaluation Friendly Vision Transformer Design
同态评估友好的视觉变压器设计

Yingjie Lao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Lao', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
  • 批准号:
    2426299
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2247620
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
  • 批准号:
    2047384
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了