GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
基本信息
- 批准号:2211049
- 负责人:
- 金额:$ 48.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The workhorse of energy storage for transportation and personal electronics has been, and remains, the lithium-ion battery. And while that technology has proven to be quite robust and useful, one of its major drawbacks is the amount of energy they store. An alternate battery technology that has seen extensive research in the last decade is lithium-sulfur (Li-S) batteries. All else being equal and assuming some hurdles can be overcome, the Li-S battery would have 2-3 times the energy storage capacity of current lithium-ion batteries. It follows that if an electric car’s current range is 200 miles, its range if equipped with a Li-S battery would be 400-600 miles. Two important hurdles that need to be overcome for Li-S batteries are: the nature of the electrolyte between the electrodes and their rapid fade. In this project, the researchers, together with industry partners, will address both problems. Currently, most of the research in Li-S batteries make use of electrolytes (ether) that are highly volatile and pose safety risks when operated above room temperature. Moreover, additives to this electrolyte comes with serious transport regulations due to degassing safety concerns. In this project, the researchers will make use of the same electrolyte that is currently being used for Li-ion batteries, which has an excellent safety record and can be used at temperatures higher than room temperature. The second problem of the rapid fade in capacity with cycling is another challenge. To solve that problem the researchers will study new 2-dimensional materials (think sheets of paper at the atomic level) to immobilize the S, both physically and chemically, to prevent it from shuttling between the battery electrodes that leads to their fade. In terms of broader impact, the researchers, by partnering with a major battery company and an end-use heavy-duty automotive company, will ensure industrial relevance of the research. If successful, this technology could lead to longer lasting batteries, creating new jobs and ensuring that the United States becomes a major player in the energy storage field. Educational broader impact will be achieved by providing training and research opportunities for graduate students pursuing PhDs and undergraduates’ involvement in the research. This fundamental GOALI project will address two key barriers for Li-S battery performance, an electrolyte that can operate at higher temperatures and mitigation of capacity loss due to polysulfide shuttling loss. The project will study a new class of materials to host sulfur, S-terminated MXenes. MXenes are two-dimensional (2D) carbides and/or nitrides discovered at Drexel in 2011 that exhibit metallic conductivity. Preliminary results have shown that MXenes are one of the few material platforms that allow both physical and chemical confinement/immobilization of S, thus reducing/minimizing the polysulfide shuttle effect. The MXenes’ metallic conductivity and “dual-immobilization” strategy will allow stable operation in carbonate electrolytes, while still enabling 70 wt.% S, with 7 mg/cm2 loadings and 83% effective S utilization (1400 mAh/g) – all necessary pre-requisites to approach the application targeted 500 Wh/kg. The cathode research on synthesis, fabrication, and study of redox activity of S-MXene cathodes will be integrated with carbonate electrolyte engineering to further suppress possible adverse polysulfide-carbonate reactions by reducing the electrophilicity. Post-mortem and in-operando spectroscopic and microscopic studies will be conducted to elucidate the quasi-solid-state redox pathways in S-terminated MXene hosts, detect the presence of polysulfides, or other undesired side products, from S-carbonate interactions. Cell-level Newman-type modeling, identifying limiting phenomena will further guide material design. The ultimate objective of this GOALI project - in collaboration with industry partners - is to develop Li-S batteries with practical S-loadings and S-utilizations that stably operate in high boiling point commercial carbonate electrolytes for application in heavy-duty battery electric vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于运输和个人电子设备的能源存储的主力已经并且仍然是锂离子电池。尽管该技术已被证明非常强大且有用,但其主要缺点之一是它们存储的能量量。在过去十年中,已经进行了广泛研究的另一种电池技术是锂硫(Li-S)电池。所有其他是平等的,假设可以克服一些障碍,则LI-S电池的储能能力是当前锂离子电池的储能容量的2-3倍。因此,如果电动汽车的当前范围为200英里,则配备了LI-S电池,则其范围将为400-600英里。 Li-S电池需要克服的两个重要障碍是:电极之间电解质的性质及其快速褪色。在这个项目中,研究人员与行业合作伙伴一起将解决这两个问题。目前,LI-S电池中的大多数研究都使用电解质(以太)高度挥发性,并且在室温高于室温时会带来安全风险。此外,由于安全问题,该电解质的添加剂伴随着严重的运输法规。在这个项目中,研究人员将利用当前用于锂离子电池的相同电解质,该电池具有出色的安全记录,可在高于室温的温度下使用。骑自行车的容量快速褪色的第二个问题是另一个挑战。为了解决这个问题,研究人员将研究新的二维材料(在原子水平上考虑纸张),以使S固定在物理和化学上,以防止其在导致其褪色的电池电极之间穿梭。在更广泛的影响方面,研究人员通过与一家大型电池公司和最终用途的重型汽车公司合作,将确保研究的工业意义。如果成功的话,这项技术可能会导致更长的电池,创造新的就业机会并确保美国成为储能领域的主要参与者。通过为攻读博士学位和本科生参与研究的研究生提供培训和研究机会,将实现更广泛的影响。这个基本的守门员项目将解决LI-S电池性能的两个关键障碍,该障碍可以在高温下运行,并降低由于多硫化物穿梭损失而导致的容量损失。该项目将研究一类新的材料,以托管硫,S端的MXENES。 MXENES是2011年在Drexel发现的二维(2D)碳化物和/或氮化物,可暴露金属电导率。初步结果表明,MXENES是允许物理和化学限制/固定化的少数物质平台之一,从而降低/最小化多硫化物班车效应。 MXENES的金属电导率和“双弹性化”策略将允许在碳酸盐电解质中稳定运行,同时仍可以启用70 wt。%S,具有7 mg/cm2的负载和83%的有效S利用率(1400 mAh/g) - 所有需要接近申请的目标的预审靶标为500 WH/KG。阴极研究S-MXENE阴极的氧化还原活性的研究将与碳酸盐电解质工程集成,以通过降低亲电性来进一步抑制可能的不良多硫化碳酸盐反应。将在S端的MXENE宿主中阐明了后期和现行的光谱研究和微观研究,以阐明来自S-碳酸盐相互作用的多硫化物或其他不受欢迎的副产物的存在。细胞级纽曼型建模,识别限制现象将进一步指导材料设计。 The ultimate objective of this GOALI project - in collaboration with industry partners - is to develop Li-S batteries with practical S-loadings and S-utilizations that stably operate in high boiling point commercial carbonate electrolytes for application in heavy-duty battery electric vehicles.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-Operando FTIR Study on the Redox Behavior of Sulfurized Polyacrylonitrile as Cathode Material for Li–S Batteries
- DOI:10.1021/acs.jpcc.3c03421
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Rhyz Pereira;K. Sarode;A. Rafie;Aaron T Fafarman;V. Kalra
- 通讯作者:Rhyz Pereira;K. Sarode;A. Rafie;Aaron T Fafarman;V. Kalra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vibha Kalra其他文献
Vibha Kalra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vibha Kalra', 18)}}的其他基金
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
- 批准号:
2427203 - 财政年份:2024
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
PFI-TT: Development of Next Generation Sulfur-based Batteries for Enhanced Run Time and Reduced Weight
PFI-TT:开发下一代硫基电池以延长运行时间并减轻重量
- 批准号:
1919177 - 财政年份:2019
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
EAGER/GOALI: 3D Printing of Nanostructured Battery Electrodes
EAGER/GOALI:纳米结构电池电极的 3D 打印
- 批准号:
1938787 - 财政年份:2019
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
Confined Self Assembly of Semiconducting Polymers in Nanofibers
纳米纤维中半导体聚合物的限域自组装
- 批准号:
1537827 - 财政年份:2016
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
Hybrid Carbon-Polymer Supercapacitors for High Energy Storage and Power Delivery
用于高能量存储和电力输送的混合碳聚合物超级电容器
- 批准号:
1463170 - 财政年份:2015
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
Nanofiber-based Novel Electrode Architecture for Lithium-Air batteries
基于纳米纤维的锂空气电池新型电极架构
- 批准号:
1236466 - 财政年份:2012
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
CAREER: Highly-ordered Electrode/Catalyst Assembly in Proton Exchange Membrane Fuel Cells for Enhanced Catalyst Utilization
职业:质子交换膜燃料电池中的高度有序电极/催化剂组件,以提高催化剂利用率
- 批准号:
1150528 - 财政年份:2012
- 资助金额:
$ 48.85万 - 项目类别:
Continuing Grant
EAGER: Confined Self Assembly of Fully Conjugated Rod-Rod Diblock Copolymers in Nanofibers
EAGER:纳米纤维中完全共轭棒-棒二嵌段共聚物的受限自组装
- 批准号:
1144376 - 财政年份:2011
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
相似国自然基金
剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
- 批准号:32360143
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
- 批准号:72363013
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
- 批准号:82372667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
- 批准号:
2427203 - 财政年份:2024
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant
NSF Engines Development Award: Developing innovative solutions for next-generation factory-built housing (IN, MI)
NSF 发动机开发奖:为下一代工厂建造的住房开发创新解决方案(印第安纳州、密歇根州)
- 批准号:
2315483 - 财政年份:2024
- 资助金额:
$ 48.85万 - 项目类别:
Cooperative Agreement
Next Generation Water Cherenkov Detector Technology Development For The Study Of Supernova Neutrinos
用于超新星中微子研究的下一代水切伦科夫探测器技术开发
- 批准号:
MR/Y034082/1 - 财政年份:2024
- 资助金额:
$ 48.85万 - 项目类别:
Fellowship
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 48.85万 - 项目类别:
Development of Natural Product-Inspired Ubiquinone Mimics as Next Generation Agrochemicals
开发受天然产物启发的泛醌模拟物作为下一代农用化学品
- 批准号:
2311665 - 财政年份:2023
- 资助金额:
$ 48.85万 - 项目类别:
Standard Grant