ATD: Gaussian Fields: Graph Representations and Black-Box Optimization Algorithms
ATD:高斯场:图表示和黑盒优化算法
基本信息
- 批准号:2027056
- 负责人:
- 金额:$ 18.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing amount of data and complexity of models used in science and engineering calls for collaborative and interdisciplinary research at the intersection of computational mathematics, statistics and machine learning. This project will develop novel computational mathematics with the aim of facilitating the statistical analysis of large and unstructured spatial data-sets using Gaussian field methods. Gaussian fields are standard models in statistics and machine learning, but their application to large data sets is notoriously difficult. The investigator will show through mathematical reasoning and practical examples that a standard family of Gaussian fields can be accurately approximated using graphs in such a way that the statistical analysis scales favorably to large data sets. As a result, the benefit of sound statistical modeling through Gaussian fields is made possible in large data regimes of current interest. In addition, the investigator will explore new computationally efficient methods that allow one to combine highly complex models with data. A central part of the project will be the training of graduate students in the Computational and Applied Mathematics (CAM) program at the University of Chicago. To that end, the investigator will i) introduce topics of current research interest in uncertainty quantification and spatial statistics in CAM and Statistics courses, both at the Master’s and PhD levels; ii) serve as PhD and Master's thesis adviser of CAM students; iii) help organize the CAM colloquium and the CAM student colloquium, allowing students to learn from, and interact with, leading experts in spatial statistics, Bayesian inverse problems and graph-based learning; and iv) disseminate the accomplished work through conference and seminar presentations.This project has two research thrusts that share a common theme of pushing forward the use of Gaussian field methods. First, the investigator will develop and analyze graph representations of Gaussian fields for the statistical analysis of discrete and unstructured spatial datasets. Second, the investigator will design and numerically explore novel black-box, derivative free optimization schemes that combine Bayesian optimization with ensemble Kalman methods. The graph representations to be used stem from the stochastic partial differential equation (SPDE) approach to Gaussian fields, one of the breakthroughs in spatial statistics in the last decade. The main idea of the SPDE approach is to define Gaussian fields as the solution to an SPDE and represent the solution using finite elements, a perspective that has inspired many modeling and computational developments. The investigator will introduce and explore graph representations, showing through rigorous analysis and numerical examples that they provide a natural way to generalize the Matérn model to unstructured datasets. The investigator will also demonstrate that graph representations seamlessly unify Gaussian field methods in spatial statistics, graph-based machine learning and Bayesian inverse problems, and will transfer several concrete computational methods and modeling ideas across these three communities. The second research thrust will concern the development of new black-box, derivative free optimization schemes. The investigator will conduct a thorough numerical comparison of existing methods, and will explore new ones. Specific objectives of this project include i) to introduce graph-based covariance models for large and unstructured discrete geospatial datasets, beyond Euclidean settings; ii) to suggest graph representations of a wide family of models in spatial statistics, providing an alternative approach to existing finite element and finite difference representations; iii) to set forward the theoretical foundations of graph representations of Gaussian fields and investigate their use in specific applications; and iv) to develop and numerically test new black-box optimization schemes, exploring their use in a variety of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中使用的数据量和模型的复杂性不断增加,需要在计算数学、统计学和机器学习的交叉领域进行协作和跨学科研究,该项目将开发新型计算数学,旨在促进大规模和大规模的统计分析。使用高斯场方法的非结构化空间数据集是统计学和机器学习中的标准模型,但众所周知,它们在大型数据集上的应用非常困难,研究人员将通过数学推理和实际示例证明标准高斯场族可以做到这一点。准确使用图形进行近似,使统计分析能够有利地扩展到大型数据集。因此,在当前感兴趣的大型数据体系中,通过高斯场进行健全的统计建模的好处成为可能。此外,研究人员将探索新的方法。该项目的核心部分是对芝加哥大学计算与应用数学(CAM)项目的研究生进行培训。 i) 介绍主题当前对 CAM 和统计学课程中的不确定性量化和空间统计的研究兴趣,包括硕士和博士级别;ii) 担任 CAM 学生的博士和硕士论文导师;iii) 帮助组织 CAM 学术讨论会和 CAM 学生学术讨论会学生向空间统计、贝叶斯反问题和基于图形的学习领域的领先专家学习并互动;iv) 通过会议和研讨会演示传播已完成的工作。该项目有两个研究主旨的共同主题是推动高斯场方法的使用,首先,研究人员将开发和分析高斯场的图形表示,以进行离散和非结构化空间数据集的统计分析;其次,研究人员将设计和数值探索。新颖的黑盒、无导数优化方案,将贝叶斯优化与集成卡尔曼方法相结合。所使用的图形表示源于高斯场的随机偏微分方程(SPDE)方法,这是空间领域的突破之一。 SPDE 方法的主要思想是将高斯场定义为 SPDE 的解,并使用有限元表示该解,这一观点启发了许多建模和计算的发展。探索图形表示,通过严格的分析和数值示例表明它们提供了一种将 Matérn 模型推广到非结构化数据集的自然方法,研究人员还将证明图形表示无缝地统一了空间统计、基于图形的机器学习和计算中的高斯场方法。贝叶斯逆问题,并将在这三个领域转移几种具体的计算方法和建模思想,研究人员将对现有方法进行彻底的数值比较。该项目的具体目标包括 i) 为大型非结构化离散地理空间数据集引入基于图形的协方差模型,超越欧几里得设置;ii) 提出空间统计中广泛模型系列的图形表示,提供另一种选择现有有限元和有限差分表示的方法;iii)提出高斯场图表示的理论基础并研究它们在特定应用中的使用;以及iv)开发和数值测试新的黑盒优化方案,探索它们的使用该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unlabeled data help in graph-based semi-supervised learning: a Bayesian nonparametrics perspective
无标签数据有助于基于图的半监督学习:贝叶斯非参数视角
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:6
- 作者:Daniel Sanz
- 通讯作者:Daniel Sanz
The SPDE approach to Matérn fields: graph representations
Matérn 场的 SPDE 方法:图形表示
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:5.7
- 作者:Sanz;Yang, R
- 通讯作者:Yang, R
Hierarchical ensemble Kalman methods with sparsity-promoting generalized gamma hyperpriors
具有稀疏性促进广义伽玛超先验的分层集成卡尔曼方法
- DOI:
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Kim, H;Sanz;Strang, A
- 通讯作者:Strang, A
A variational inference approach to inverse problems with gamma hyperpriors
伽玛超先验逆问题的变分推理方法
- DOI:
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Agarwal, S;Kim, H;Sanz;and Strang, A
- 通讯作者:and Strang, A
Autodifferentiable Ensemble Kalman Filters
自微集成卡尔曼滤波器
- DOI:10.1137/21m1434477
- 发表时间:2022-06
- 期刊:
- 影响因子:3.6
- 作者:Chen, Yuming;Sanz;Willett, Rebecca
- 通讯作者:Willett, Rebecca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Sanz-Alonso其他文献
Daniel Sanz-Alonso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Sanz-Alonso', 18)}}的其他基金
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
- 批准号:
2237628 - 财政年份:2023
- 资助金额:
$ 18.11万 - 项目类别:
Continuing Grant
Collaborative Research: Machine Learning and Inverse Problems in Discrete and Continuous Settings
协作研究:离散和连续环境中的机器学习和反问题
- 批准号:
1912818 - 财政年份:2019
- 资助金额:
$ 18.11万 - 项目类别:
Standard Grant
相似国自然基金
涡旋拉盖尔-高斯光驱动的激光等离子体参量不稳定性
- 批准号:12375243
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
高斯乘性混沌与共形场论
- 批准号:12301164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的乘性分数高斯噪声驱动下复杂系统的动力学分析
- 批准号:12362005
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
面向角度变化反射系数的快速最小二乘高斯束偏移成像方法研究
- 批准号:42374166
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
MIMO高斯多用户信道的容量域研究
- 批准号:62371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 18.11万 - 项目类别:
Standard Grant
Random fields: non-Gaussian stochastic models and approximation schemes
随机场:非高斯随机模型和近似方案
- 批准号:
DP220101680 - 财政年份:2022
- 资助金额:
$ 18.11万 - 项目类别:
Discovery Projects
Relationship between Glaucoma and the Three-Dimensional Optic Nerve Head Related Structure
青光眼与三维视神经头相关结构的关系
- 批准号:
10316448 - 财政年份:2021
- 资助金额:
$ 18.11万 - 项目类别:
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
- 批准号:
10513805 - 财政年份:2021
- 资助金额:
$ 18.11万 - 项目类别:
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
- 批准号:
10157768 - 财政年份:2021
- 资助金额:
$ 18.11万 - 项目类别: