RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
基本信息
- 批准号:2312102
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will investigate methods to create, from multiple images, a scene model that enables visualization, synthesis, counting, measurement, and other analysis. The goals of the project are driven by the need for unified geometric (where, what shape, how big) and semantic (what is it, what is it like) scene models, based on the investigators' direct experience in building products for construction management and vehicle safety. So far, computer vision has arguably had its largest impact in internet domains. This project is needed for broader applications involving the physical world, and the potential impact is hard to overstate. Resulting capabilities will lay foundations for real-time modeling, augmented reality, simulation, and robotics applications. The project lays the groundwork for a queryable, editable, and actionable semantic and geometric scene model, a foundational problem in computer vision. Neural rendering fields, vision language models, and diffusion have been impressively demonstrated for separate image synthesis and analysis applications. The project brings these advances together to enable new representations and capabilities for 3D semantic scene modeling. The result is a scalable and robust approach to create, update, query, and edit models of the world inferred from multiple observations. In particular, the project involves three plans of action. The first is to create measurable and meshable 3D scene models that can be efficiently estimated from sparse views and scale to thousands of images. This includes several developments: new efficiently optimizable, compact representations; incorporation of monocular geometry estimates; joint refinement of pose, gain, and other parameters; methods to scale seamlessly to massive scenes and photo sets; and ways to extract high resolution meshes, floor maps, and other common deliverables. The second plan of action is to incorporate semantic information and decoders for counting, measuring, and change detection. This includes encoding semantics in continuous embeddings and creating decoders for visualizing, counting, measuring, and other scene-wide geometric-semantic queries, to enable real-time, flexible mapping and facility assessment. The third plan of action is to extrapolate beyond direct observations and infer and update models as new observations arrive by integrating generative and predictive processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究从多个图像创建场景模型的方法,该模型能够实现可视化、合成、计数、测量和其他分析。该项目的目标是由统一几何(位置、形状、大小)的需求驱动的。 )和语义(它是什么,它是什么样的)场景模型,基于研究人员在构建用于施工管理和车辆安全的产品方面的直接经验,迄今为止,计算机视觉在互联网领域产生了最大的影响。需要涉及物理世界的更广泛的应用,并且潜在的影响很难预测由此产生的功能将为实时建模、增强现实、模拟和机器人应用奠定基础,该项目为可查询、可编辑和可操作的语义和几何场景模型(计算机视觉的基本问题)奠定了基础。该项目将这些进步结合在一起,为 3D 语义场景建模提供了新的表示和功能,从而形成了一种可扩展且强大的方法来创建、更新、查询和编辑从多个观察中推断出的世界模型,该项目涉及三个行动计划:第一个是创建可测量和可网格化的 3D 场景模型,可以从稀疏视图和规模到数千个进行有效估计。这包括多项进展:新的可有效优化的紧凑表示;结合单目几何估计;无缝缩放到大量场景和照片集的方法;第二个行动计划是结合语义信息和解码器来进行计数、测量和变化检测,这包括在连续嵌入中编码语义以及创建用于可视化、计数、测量和其他的解码器。场景范围的几何语义查询,以实现实时、灵活的绘图和设施评估。第三个行动计划是在直接观察之外进行推断,并通过集成生成和预测过程来推断和更新模型。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek Hoiem其他文献
Learning to localize detected objects
学习定位检测到的物体
- DOI:
10.1109/cvpr.2012.6248070 - 发表时间:
2012-06-16 - 期刊:
- 影响因子:0
- 作者:
Qieyun Dai;Derek Hoiem - 通讯作者:
Derek Hoiem
Learning Discriminative Collections of Part Detectors for Object Recognition
学习用于对象识别的零件检测器的判别集合
- DOI:
10.1109/tpami.2014.2366122 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:23.6
- 作者:
Kevin J. Shih;Ian Endres;Derek Hoiem - 通讯作者:
Derek Hoiem
Webly Supervised Concept Expansion for General Purpose Vision Models
通用视觉模型的 Webly 监督概念扩展
- DOI:
10.1007/978-3-031-20059-5_38 - 发表时间:
2022-02-04 - 期刊:
- 影响因子:0
- 作者:
Amita Kamath;Christopher Clark;Tanmay Gupta;Eric Kolve;Derek Hoiem;Aniruddha Kembhavi - 通讯作者:
Aniruddha Kembhavi
An empirical study of context in object detection
对象检测中上下文的实证研究
- DOI:
10.1109/cvpr.2009.5206532 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:0
- 作者:
S. Divvala;Derek Hoiem;James Hays;Alexei A. Efros;M. Hebert - 通讯作者:
M. Hebert
Consistent Multimodal Generation via A Unified GAN Framework
通过统一的 GAN 框架实现一致的多模态生成
- DOI:
10.1109/wacv57701.2024.00497 - 发表时间:
2023-07-04 - 期刊:
- 影响因子:0
- 作者:
Zhen Zhu;Yijun Li;Wei;Krishna Kumar Singh;Zhixin Shu;Soeren Pirk;Derek Hoiem - 通讯作者:
Derek Hoiem
Derek Hoiem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek Hoiem', 18)}}的其他基金
SBIR Phase I: Analysis of Progress Photos for Indoor Construction Progress Monitoring
SBIR 第一阶段:室内施工进度监控的进度照片分析
- 批准号:
1819248 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Recovering Object 3D Shape and Material from Isolated Images
RI:小:从孤立图像中恢复对象 3D 形状和材质
- 批准号:
1421521 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Recognition Using Shared Structures, Flexible Learning, and Efficient Search
职业:使用共享结构、灵活学习和高效搜索的大规模识别
- 批准号:
1053768 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Physically Grounded Object Recognition
RI:媒介:协作研究:物理接地物体识别
- 批准号:
0904209 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CompCog: RI: Small: Human-like semantic grammar induction through knowledge distillation from pre-trained language models
CompCog:RI:Small:通过预训练语言模型的知识蒸馏进行类人语义语法归纳
- 批准号:
2313140 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Representation Learning for Semantic Mapping and Safe Robot Navigation
RI:小型:语义映射和安全机器人导航的表示学习
- 批准号:
2007141 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Small: A Differential Geometry Paradigm for Constructing a Semantic Mid-Level Representation for Multinocular Pose Estimation and Reconstruction
RI:小:为多目姿态估计和重建构建语义中级表示的微分几何范式
- 批准号:
1910530 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small:Comp Cog: Broad-coverage semantic models of human sentence processing
RI:Small:Comp Cog:人类句子处理的广泛覆盖语义模型
- 批准号:
1816891 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Integrative, Semantic-Aware, Speech-Driven Models for Believable Conversational Agents with Meaningful Behaviors
RI:小型:集成的、语义感知的、语音驱动的模型,用于具有有意义行为的可信会话代理
- 批准号:
1718944 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant