NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation

NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台

基本信息

  • 批准号:
    2040588
  • 负责人:
  • 金额:
    $ 96.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. This project, NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation, will develop a novel health-related federated learning and model-sharing platform, LEARNER, to enable collaborative big data mining for biomedical applications by integrating cross-disciplinary expertise from machine learning, trustworthy AI, and biomedical data science. LEARNER will incorporate novel asynchronous federated learning algorithms based on rigorous theoretical foundations using trustworthy AI techniques, fairness-aware and interpretable machine learning models, large-scale computational strategies and effective software tools to reveal the complex relationships among heterogeneous health data. The project will address critical challenges in exploiting big data for biomedical and health, which include access to large data collections, computational intensity of AI/ML algorithms, complexity of hyperparameter tuning, and the need for effective multidisciplinary expertise and collaboration. Data privacy is another critical concern since health data is intrinsically sensitive and could be exploited to reveal an individual’s identity even when the data are carefully anonymized. LEARNER will include a suite of collaborative data analysis and privacy-preserving mechanisms and tools that will securely support various types of health data analytics, including mechanisms to detect potential data privacy leakages. Machine learning models typically involve complex procedures for optimization and the induced results can be difficult to interpret, and to replicate and reproduce. Novel methods will be employed to improve the interpretability and reproducibility of complex health data analytics models.The project team, with individuals from academia and industry, will develop an interdisciplinary program for training and education of graduate and undergraduate students. A cross-disciplinary course will also be developed on Health Data Science for beginning graduate students and senior undergraduate students from a variety of programs, including Computer Science and Engineering, Informatics, Electrical Engineering, Biomedical Engineering, Biology, and Statistics. The project will put special emphasis on attracting female and under-represented minority students to explore advanced computational technologies in the context of the LEARNER platform. Interested senior undergraduate students will be able to work on well-defined and well-scoped small projects, which will enable them to work with graduate students and the PI team of the project. Such project could also be undertaken as summer projects by undergraduate students in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,这些努力应对国家重要性的挑战,并将在不久的将来为社会带来价值的可交付成果。该项目,NSF收敛加速器轨道D:一个可信赖的集成模型和用于加速AI驱动的健康创新的数据共享平台,将开发一个与健康相关的新型联邦学习和模型共享平台,以启用与机器人学习的跨学科研究的生物医学应用程序,以启用生物医学应用程序的协作大数据挖掘,这学习者将使用可信赖的AI技术,公平感和可解释的机器学习模型,大规模的计算策略和有效的软件工具来融合基于严格的理论基础的新型异步联合学习算法,以揭示异质健康数据之间的复杂关系。该项目将针对利用大数据进行生物医学和健康方面的关键挑战,包括访问大型数据收集,AI/ML算法的计算强度,超参数调整的复杂性以及有效的多学科专业知识和协作的需求。数据隐私是另一个关键问题,因为健康数据本质上是敏感的,并且可以探索以揭示个人的身份,即使数据仔细匿名化。学习者将包括一系列协作数据分析和隐私保护机制和工具,这些机制将安全支持各种类型的健康数据分析,包括检测潜在数据隐私泄漏的机制。机器学习模型通常涉及复杂的优化程序,并且诱导的结果可能难以解释,复制和再现。将聘请新颖的方法来改善复杂健康数据分析模型的可解释性和可重复性。项目团队将与来自学术界和行业的个人一起制定一项跨学科计划,用于培训和教育研究生和本科生。还将在健康数据科学上开发跨学科课程,旨在为初学者和来自各种课程的高级本科生,包括计算机科学和工程,信息学,电气工程,生物医学工程,生物学和统计学。该项目将特别强调吸引女性和代表性不足的少数民族学生在学习者平台的背景下探索先进的计算技术。有兴趣的高级本科生将能够从事定义明确且分布良好的小型项目,这将使他们能够与研究生和项目的PI团队合作。该项目也可以由科学和工程学的本科生作为夏季项目进行。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为是通过评估而被视为珍贵的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Projection-Free Algorithm for Nonconvex Constrained Learning Models
非凸约束学习模型的通信高效无投影算法
A Faster Decentralized Algorithm for Nonconvex Minimax Problems
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
  • 通讯作者:
    Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
Step-Ahead Error Feedback for Distributed Training with Compressed Gradient
  • DOI:
    10.1609/aaai.v35i12.17254
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    An Xu;Zhouyuan Huo;Heng Huang
  • 通讯作者:
    An Xu;Zhouyuan Huo;Heng Huang
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
  • DOI:
    10.1109/cvpr52688.2022.02020
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
  • 通讯作者:
    An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
Detached Error Feedback for Distributed SGD with Random Sparsification
  • DOI:
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    An Xu;Heng Huang
  • 通讯作者:
    An Xu;Heng Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hai Li其他文献

Concurrent pulmonary benign metastasizing leiomyoma and primary lung adenocarcinoma: a case report.
并发肺良性转移性平滑肌瘤和原发性肺腺癌:病例报告。
  • DOI:
    10.21037/acr.2018.04.03
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aiping Chen;Tao Sun;Xuehui Pu;Hai Li;Tong;Hong Yu
  • 通讯作者:
    Hong Yu
Inter-rater and Intra-rater Reliability of the Chinese Version of the Action Research Arm Test in People With Stroke
中国版脑卒中患者行动研究手臂测试的评估者间和评估者内信度
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jiang;Peiming Chen;Tao Zhang;Hai Li;Qiang Lin;Yurong Mao;Dongfeng Huang
  • 通讯作者:
    Dongfeng Huang
Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation
H2O2、Na2S2O8 和 NaClO 氧化溶解富碳酸盐页岩和富硅酸盐页岩的实验研究:对氧化刺激页岩气采收的启示
  • DOI:
    10.1016/j.jngse.2020.103207
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Yang;Danqing Liu;Yilian Li;Cong Yang;Zhe Yang;Xiaohong Chen;Hai Li;Zhi Tang
  • 通讯作者:
    Zhi Tang
Neural architecture search for in-memory computing-based deep learning accelerators
基于内存计算的深度学习加速器的神经架构搜索
  • DOI:
    10.1038/s44287-024-00052-7
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Krestinskaya;M. Fouda;Hadjer Benmeziane;Kaoutar El Maghraoui;Abu Sebastian;Wei D. Lu;M. Lanza;Hai Li;Fadi J. Kurdahi;Suhaib A. Fahmy;Ahmed M. Eltawil;K. N. Salama
  • 通讯作者:
    K. N. Salama
Cassini Oval Scanning for High-Speed AFM Imaging
用于高速 AFM 成像的卡西尼椭圆形扫描

Hai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hai Li', 18)}}的其他基金

Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
  • 批准号:
    2233808
  • 财政年份:
    2022
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955196
  • 财政年份:
    2020
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Continuing Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
  • 批准号:
    1910299
  • 财政年份:
    2019
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1744082
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717885
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1615475
  • 财政年份:
    2016
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1337198
  • 财政年份:
    2013
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
  • 批准号:
    1311747
  • 财政年份:
    2013
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了