NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation

NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台

基本信息

  • 批准号:
    2040588
  • 负责人:
  • 金额:
    $ 96.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. This project, NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation, will develop a novel health-related federated learning and model-sharing platform, LEARNER, to enable collaborative big data mining for biomedical applications by integrating cross-disciplinary expertise from machine learning, trustworthy AI, and biomedical data science. LEARNER will incorporate novel asynchronous federated learning algorithms based on rigorous theoretical foundations using trustworthy AI techniques, fairness-aware and interpretable machine learning models, large-scale computational strategies and effective software tools to reveal the complex relationships among heterogeneous health data. The project will address critical challenges in exploiting big data for biomedical and health, which include access to large data collections, computational intensity of AI/ML algorithms, complexity of hyperparameter tuning, and the need for effective multidisciplinary expertise and collaboration. Data privacy is another critical concern since health data is intrinsically sensitive and could be exploited to reveal an individual’s identity even when the data are carefully anonymized. LEARNER will include a suite of collaborative data analysis and privacy-preserving mechanisms and tools that will securely support various types of health data analytics, including mechanisms to detect potential data privacy leakages. Machine learning models typically involve complex procedures for optimization and the induced results can be difficult to interpret, and to replicate and reproduce. Novel methods will be employed to improve the interpretability and reproducibility of complex health data analytics models.The project team, with individuals from academia and industry, will develop an interdisciplinary program for training and education of graduate and undergraduate students. A cross-disciplinary course will also be developed on Health Data Science for beginning graduate students and senior undergraduate students from a variety of programs, including Computer Science and Engineering, Informatics, Electrical Engineering, Biomedical Engineering, Biology, and Statistics. The project will put special emphasis on attracting female and under-represented minority students to explore advanced computational technologies in the context of the LEARNER platform. Interested senior undergraduate students will be able to work on well-defined and well-scoped small projects, which will enable them to work with graduate students and the PI team of the project. Such project could also be undertaken as summer projects by undergraduate students in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF 融合加速器支持基于使用的、基于团队的多学科努力,以解决国家重大挑战,并将在不久的将来为社会提供有价值的成果。该项目,NSF 融合加速器轨道 D:可信的集成模型和数据共享。加速人工智能驱动的健康创新平台将开发一个新型的健康相关联合学习和模型共享平台LEARNER,通过整合跨学科专业知识,实现生物医学应用的协作大数据挖掘来自机器学习、可信人工智能和生物医学数据科学的 LEARNER 将结合基于严格理论基础的新型异步联邦学习算法,使用可信人工智能技术、公平感知和可解释的机器学习模型、大规模计算策略和有效的软件工具来揭示。该项目将解决利用大数据进行生物医学和健康方面的关键挑战,其中包括访问大数据集合、人工智能/机器学习算法的计算强度、超参数调整的复杂性以及有效性的需求。多学科专业知识和协作是另一个关键问题,因为健康数据本质上是敏感的,即使数据被仔细匿名化,也可能被利用来泄露个人身份。这将安全地支持各种类型的健康数据分析,包括检测潜在数据隐私泄露的机制。机器学习模型通常涉及复杂的优化过程,并且所产生的结果可能难以解释,并且将采用新颖的方法。提高可解释性项目团队将与来自学术界和工业界的人士一起开发一个跨学科项目,用于研究生和本科生的培训和教育,还将开发一个关于健康数据科学的跨学科课程。该项目将特别注重吸引女性和代表性不足的少数族裔学生探索先进的计算。背景下的技术感兴趣的高年级本科生将能够从事定义明确、范围明确的小型项目,这将使他们能够与研究生和该项目的 PI 团队合作,这样的项目也可以在暑期进行。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Projection-Free Algorithm for Nonconvex Constrained Learning Models
非凸约束学习模型的通信高效无投影算法
A Faster Decentralized Algorithm for Nonconvex Minimax Problems
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
  • 通讯作者:
    Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
Step-Ahead Error Feedback for Distributed Training with Compressed Gradient
  • DOI:
    10.1609/aaai.v35i12.17254
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    An Xu;Zhouyuan Huo;Heng Huang
  • 通讯作者:
    An Xu;Zhouyuan Huo;Heng Huang
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
  • DOI:
    10.1109/cvpr52688.2022.02020
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
  • 通讯作者:
    An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
On the Convergence of Communication-Efficient Local SGD for Federated Learning
  • DOI:
    10.1609/aaai.v35i9.16920
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongchang Gao;An Xu;Heng Huang
  • 通讯作者:
    Hongchang Gao;An Xu;Heng Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hai Li其他文献

Genetic Polymorphism in the RYR1 C6487T Is Associated with Severity of Hypospadias in Chinese Han Children
RYR1 C6487T基因多态性与中国汉族儿童尿道下裂严重程度相关
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyan Zhang;Zhuo Zhang;Linpei Jia;Wei;Hai Li
  • 通讯作者:
    Hai Li
Structural knowledge error, rather than reward insensitivity, explains the reduced metacontrol in aging
结构性知识错误,而不是奖励不敏感,解释了衰老过程中元控制的减少
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoyu Zuo;Lizhuang Yang;Hai Li
  • 通讯作者:
    Hai Li
Implementation of Classic McEliece key generation based on Goppa binary code
基于Goppa二进制码的Classic McEliece密钥生成的实现
Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors
缺氧靶向碳纳米管作为肿瘤光声成像的敏感造影剂
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Zanganeh;A. Aguirre;N. Biswal;Christopher M Pavlik;Michael B. Smith;Umar S. Alqasemi;Hai Li;Quing Zhu
  • 通讯作者:
    Quing Zhu
Design and Realization of Semaphore for a Sensor Network Operating System
传感器网络操作系统信号量的设计与实现
  • DOI:
    10.4028/www.scientific.net/amm.644-650.3917
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Zhou;Hai Li
  • 通讯作者:
    Hai Li

Hai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hai Li', 18)}}的其他基金

Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
  • 批准号:
    2233808
  • 财政年份:
    2022
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955196
  • 财政年份:
    2020
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Continuing Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
  • 批准号:
    1910299
  • 财政年份:
    2019
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1744082
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717885
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1615475
  • 财政年份:
    2016
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1337198
  • 财政年份:
    2013
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
  • 批准号:
    1311747
  • 财政年份:
    2013
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant

相似国自然基金

多飞行器给定任务时间的指定时刻收敛控制研究
  • 批准号:
    62303256
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
  • 批准号:
    12301520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通算协同的高准确、快收敛无线分布式学习优化研究
  • 批准号:
    62301222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Stokes方程的高阶元有限体积法的稳定性和收敛性
  • 批准号:
    12301506
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的降维优化流场加速收敛方法研究
  • 批准号:
    12372290
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 96.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了