NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)

NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)

基本信息

  • 批准号:
    2344256
  • 负责人:
  • 金额:
    $ 64.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The need to acquire real-time information about the air we breathe has been brought into the spotlight through recent events and developments, including wildfires, hazardous spills, increasingly stringent emissions regulations, and the identification of specific volatiles in air, spoiled food and diseased breath. However, accurately identifying the composition of gaseous samples typically relies on bulky, expensive and stationary spectroscopic equipment. This Phase I project will introduce a portable chemical gas sensor that relies on artificial intelligence (AI) to provide highly accurate identification of volatiles in real-time. The real-time chemical sensing data will pave the way to standardization in detection and reporting across sectors – a documented challenge leading to poor accountability in emission monitoring, inefficiently timed ventilation and air purification processes, and unnecessary food waste, all of which are responsible for immense climate, health, and socio-economic impacts. The work will have a significant impact on STEM education, as this highly multidisciplinary project is led by a diverse research team with a strong commitment to outreach, mentorship, and scientific communication. The concepts under investigation range from fluid dynamics, optics, and nanofabrication to AI, building simulations, and methods standardization. This creates many opportunities for research training in different disciplines, allowing students from all kinds of backgrounds (scientific and demographic) to participate. The project builds upon a relatively simple sensor: a Bragg stack photonic crystal, whose optical reflection spectrum changes upon infiltration by volatiles into its pores. The time-dependence of the spectral shifts is governed by the unique transport dynamics produced by a compound or mixture of compounds, and is used to continuously train a machine learning algorithm for classification and physical property prediction of compounds. Unique to this approach, the team introduces and implements olfactory-inspired ‘sniffing’ sequences when volatiles are ‘inhaled’ and ‘exhaled’ in specific dynamic patterns that maximize the real-time discriminatory power of the device. Phase I research will entail 1) prototyping, device miniaturization, and software development for detection of a subset of the target chemicals, 2) device and algorithm optimization for real-time sensing and integration into application-specific domains, guided by a combination of control theory, systems design, and machine learning, and 3) pilot studies in real environments, in partnership with industrial experts. Together, the multidisciplinary theoretical, experimental, and applied team will push the frontier of chemical sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过最近的事件和发展,包括野火,危险溢出,越来越严格的排放法规以及对空气中的特定挥发物,食物和呼吸呼吸的识别,需要获得有关我们呼吸空气的实时信息的需求。但是,准确地识别气态样品的组成通常依赖于笨重,昂贵且固定的光谱设备。该阶段I项目将引入一个依赖人工智能(AI)的便携式化学气体传感器,以实时提供高度准确的识别。实时化学传感器数据将为跨部门的检测和报告中的标准化铺平道路,这是一项挑战,导致在排放监测,效率低下的定时通风和空气净化过程以及不必要的食物浪费中责任不良,所有这些挑战都造成了巨大的气候,健康和社会经济影响。这项工作将对STEM教育产生重大影响,因为这个高度多学科的项目是由一个潜水员研究团队领导的,他们致力于外展,心态和科学沟通。投资下的概念范围从流体动力学,光学和纳米制作到AI,建筑模拟和方法标准化。这为不同学科的研究培训创造了许多机会,使来自各种背景(科学和人口)的学生能够参加。该项目建立在一个相对简单的传感器上:Bragg堆栈光子晶体,其光学反射光谱在通过挥发为孔中渗透而变化。光谱移位的时间依赖性受化合物或混合物混合产生的独特传输动力学的控制,并用于连续训练机器学习算法,以分类和物理性能预测化合物。在这种方法中,当挥发物被“吸入”并以特定的动态模式“吸入”并“呼气”时,团队介绍并实现了嗅觉启发的“嗅探”序列,从而最大程度地发挥了设备的实时歧视能力。第一阶段的研究将需要1)原型,设备小型化和软件开发,用于检测目标化学物质的子集,2)设备和算法优化,以实时感应和集成到应用程序特定域中,以控制理论,系统设计和机器学习的结合以及3)在现实环境中的促进型型在具有工业级别的partnerperspers offernerial perforts precters precters offerneppers offernection offection Theopical,系统设计和机器学习和3)。多学科的理论,实验和应用团队一起将推动化学敏感性的前沿。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joanna Aizenberg其他文献

Identifying the Optimal Pd Ensemble Size in Dilute PdAu Alloy Nanomaterials for Benzaldehyde Hydrogenation
确定用于苯甲醛加氢的稀 PdAu 合金纳米材料中的最佳 Pd 系综尺寸
  • DOI:
    10.1021/acscatal.3c02671
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    S. Kaiser;J. V. D. van der Hoeven;Ge Yan;Kang Rui Garrick Lim;Hio Tong Ngan;Sadhya Garg;Mustafa Karatok;M. Aizenberg;Joanna Aizenberg;P. Sautet;C. Friend;R. Madix
  • 通讯作者:
    R. Madix
Dilute Pd-in-Au alloy RCT-SiO<sub>2</sub> catalysts for enhanced oxidative methanol coupling
  • DOI:
    10.1016/j.jcat.2021.06.003
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amanda Filie;Tanya Shirman;Alexandre C. Foucher;Eric A. Stach;Michael Aizenberg;Joanna Aizenberg;Cynthia M. Friend;Robert J. Madix
  • 通讯作者:
    Robert J. Madix

Joanna Aizenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joanna Aizenberg', 18)}}的其他基金

Collaborative Research: CDI-Type I: Developing Computational Models to Guide the Design of Chemomechanically Responsive, Reconfigurable Surfaces
合作研究:CDI-I 型:开发计算模型来指导化学机械响应、可重构表面的设计
  • 批准号:
    1124839
  • 财政年份:
    2011
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 64.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了