NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems

NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案

基本信息

  • 批准号:
    2344357
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Abstract for “NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assess-ment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems”The project addresses the challenges of freshwater quality and quantity by integrating next-generation sensors, advanced flood modeling, and co-generated policy knowledge to enhance community resili-ency. Extreme weather events often result in the release of toxic chemicals, raw and partially treated sewage, and agricultural wastes into the environment. These disasters disproportionately affect un-derserved communities with outdated infrastructure and limited governmental resources. Focused on the Pearl River Watershed in Mississippi and the Santee River Basin in South Carolina, the research employs a modular sensor system, including unpiloted aerial vehicles and low-cost Nuclear Magnetic Resonance (NMR) spectrometers, to assess contaminant dispersion in watersheds. Through a data-driven and physics-based modeling approach, the project aims to provide reliable spatial and tem-poral projections for water quality and quantity, supporting decision-makers in monitoring freshwater systems and planning for water emergencies. The interdisciplinary team, combining expertise in social sciences, public policy, environmental justice, hydrologic modeling, distributed sensing, artificial intelli-gence, and quantum materials, seeks to empower communities to generate and implement equitable and sustainable solutions. The project's societal impacts extend to supporting policy decisions, incor-porating equity in adaptation solutions, and mitigating environmental impacts from flooding in vulner-able communities.The project focuses on developing low-cost, field-deployable NMR sensor systems, integrating data collection methods with hydrologic modeling, and adopting a system of socio-environmental systems approach. This integrated approach is required to overcome challenges in real-time data collection and the transition of academic research into actionable solutions. Low-cost and easy-to-deploy in situ NMR provides optimal sensing technology for developing a contaminant detection, quantification, and tracking system without constraining sensor development to focus on a specific contaminant. Key components of the project’s phase I scope of work include: (a) Refining an open-source compact NMR sensing system developed by the research team for in-situ monitoring of contaminants in aquatic envi-ronments. (b) Developing a coupled flood and contaminant modeling and monitoring framework to predict and respond to flooding and flood-borne contaminants with enhanced accuracy and timing. (c) Modeling the complexities and feedback loops inherent in integrated socio-environmental systems using a system of systems approach. The Phase I project establishes the groundwork for a potential Phase II initiative, aiming for an enhanced understanding of community vulnerability to storm-induced contaminants, advancements in scalable heterogeneous data acquisition for real-time flood and con-taminant tracking, and equipping communities with tools to design adaptive, active, and sustainable next-generation infrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“ NSF收敛加速器轨道K:Compass:全面的预测,评估和公平解决方案,用于暴风雨引起的淡水系统污染”,该项目通过整合下一代传感器,先进的洪水建模,高级洪水建模以及共同生成的政策知识来提高社区弹性弹性,以解决淡水质量和数量的挑战。极端天气事件通常会导致有毒化学物质,原始和部分处理的污水以及对环境的农业废物的释放。这些灾难不成比例地影响了没有服务的基础设施和有限的政府资源的社区。研究员工专注于密西西比州的珍珠河流域和南卡罗来纳州的Santee河盆地,一个模块化传感器系统,包括未插入的航空车和低成本的核磁共振(NMR)光谱仪,以评估流水中的污染物分散体。通过基于数据驱动和物理的建模方法,该项目旨在为水质和数量提供可靠的空间和临时项目,从而支持决策者监测淡水系统并为水面紧急情况计划。跨学科团队结合了社会科学,公共政策,环境正义,水文建模,分布式感应,人工智能和量子材料的专业知识,旨在使社区能够生成和实施公平和可持续的解决方案。该项目的社会影响扩展到支持政策决策,将公平性纳入适应性解决方案,并减轻易易受到的社区洪水所产生的环境影响。该项目着重于开发低成本的,可实地的可剥离NMR传感器系统,将数据收集方法与水文建模集成,并采用社会环境系统的系统。需要这种综合方法来克服实时数据收集的挑战,并将学术研究转变为可行的解决方案。低成本且易于掌握的原位NMR为开发污染物检测,量化和跟踪系统提供了最佳的灵敏度技术,而无需限制传感器开发以专注于特定的污染物。该项目第一阶段工作范围的关键组成部分包括:(a)研究团队开发的开源紧凑型NMR感应系统,用于在水生环境中对污染物的原位监测。 (b)开发一个耦合的洪水和污染物建模和监测框架,以增强的准确性和时机来预测和应对洪水和洪水传播污染物。 (c)使用系统方法系统建模在集成的社会环境系统中继承的复杂性和反馈回路。第一阶段项目为潜在的II期计划建立了基础,目的是增强对社区对风暴引起的污染物的脆弱性的了解,可伸缩的异质数据获取的进步,用于实时洪水和实时洪水跟踪,并为社区装备社区,并提供具有设计适应性的,活跃的,可持续的统计范围的工具,以表现出来。通过使用基金会的智力优点和更广泛影响的评论标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jasim Imran其他文献

Bayes_Opt-SWMM: A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM
Bayes_Opt-SWMM:基于高斯过程的贝叶斯优化工具,用于使用 SWMM 进行实时洪水建模
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. H. Tanim;Corinne Smith;Austin R.J. Downey;Jasim Imran;E. Goharian
  • 通讯作者:
    E. Goharian
Numerical modeling of hyperpycnal plume
  • DOI:
    10.1016/j.margeo.2005.06.025
  • 发表时间:
    2005-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sadia M. Khan;Jasim Imran;Scott Bradford;James Syvitski
  • 通讯作者:
    James Syvitski

Jasim Imran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jasim Imran', 18)}}的其他基金

LEAP-HI: A Data-Driven Fragility Framework for Risk Assessment of Levee Breach
LEAP-HI:用于堤坝溃决风险评估的数据驱动的脆弱性框架
  • 批准号:
    2152896
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Modeling of Flow and Morphodynamics of Sinuous Submarine Channels
蜿蜒海底航道的流动和形态动力学建模
  • 批准号:
    1061244
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Career: Experimental and Numerical Modeling of Flow and Morphology Associated with Meandering Submarine Channels
职业:与蜿蜒海底通道相关的流动和形态的实验和数值模拟
  • 批准号:
    0134167
  • 财政年份:
    2002
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了