Scanning Electrochemical Microscopy of Single-Crystal Hydrogen Electrocatalysis

单晶氢电催化的扫描电化学显微镜

基本信息

  • 批准号:
    2304922
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Shigeru Amemiya and his group at the University of Pittsburgh are developing new electrochemical methods that allow for the identification of reactive intermediates and likely reaction pathways for hydrogen electrocatalysis. This project focuses on gaining an advanced understanding of hydrogen electrocatalysis, which is crucial for the efficient production and utilization of sustainable and clean hydrogen fuel and also for many important fields of electrochemical science and technology. Reliable identification of the molecular mechanism of hydrogen electrocatalysis is urgently demanded not only to understand the superior electrocatalytic activity of platinum-group metals but also to design alternative superior electrocatalysts based on inexpensive and earth abundant elements. Students from underrepresented groups will experience interdisciplinary training by participating in the development of advanced electrochemical instruments for the proposed research and in the implementation of the sophisticated computational simulation of electrocatalysis for an undergraduate laboratory.This project is focused on the quantitative study of both hydrogen evolution and oxidation reactions for the resolution of the intermingled pathways of these two-step two-electron reactions. New nanoelectrochemical methods being developed in the Amemiya laboratory will provide an opportunity to measure the adsorption energy of hydrogen atoms as well as establish the electrochemical identity of surface intermediates. Specifically, Professor Amemiya and his research group are developing and applying transient nanogap voltammetry based on scanning electrochemical microscopy to separately determine the thermodynamic and kinetic parameters of each electron transfer and adsorption step. Reliable reaction parameters can be obtained by employing clean single crystal metals with a well defined arrangement of surface atoms. A volcano plot will be established from the experimentally determined parameters of each involved reaction at both weakly and strongly adsorbing metals and will serve as a valuable guide for the rational design of improved electrocatalysts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,匹兹堡大学雨宫茂教授和他的团队正在开发新的电化学方法,可以识别反应中间体和氢电催化的可能反应途径。该项目的重点是获得对氢电催化的深入了解,这对于可持续和清洁氢燃料的高效生产和利用以及电化学科学技术的许多重要领域至关重要。迫切需要可靠地识别氢电催化的分子机制,不仅可以了解铂族金属的优异电催化活性,而且还可以设计基于廉价且地球丰富的元素的替代性优质电催化剂。来自代表性不足群体的学生将通过参与为拟议研究开发先进电化学仪器以及为本科实验室实施复杂的电催化计算模拟来体验跨学科培训。该项目专注于氢析出和氢析出的定量研究。氧化反应来解决这些两步双电子反应的混合途径。雨宫实验室正在开发的新纳米电化学方法将为测量氢原子的吸附能以及建立表面中间体的电化学特性提供机会。具体来说,Amemiya教授和他的研究小组正在开发和应用基于扫描电化学显微镜的瞬态纳米间隙伏安法,以分别确定每个电子转移和吸附步骤的热力学和动力学参数。通过使用表面原子排列明确的清洁单晶金属可以获得可靠的反应参数。将根据弱吸附金属和强吸附金属的每个相关反应的实验确定参数建立火山图,并将为改进电催化剂的合理设计提供有价值的指导。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shigeru Amemiya其他文献

Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications
  • DOI:
    10.1039/d3cc01982a
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Siao-Han Huang;Moghitha Parandhaman;Solaleh Farnia;Jiyeon Kim;Shigeru Amemiya
  • 通讯作者:
    Shigeru Amemiya
Nanoscale Quantitative Imaging of Single Nuclear Pore Complexes by Scanning Electrochemical Microscopy
通过扫描电化学显微镜对单核孔复合物进行纳米级定量成像
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ran Chen;Pavithra Pathirathna;Ryan J Balla;Jiyeon Kim;Shigeru Amemiya
  • 通讯作者:
    Shigeru Amemiya
Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy
  • DOI:
    10.1039/c9sc02356a
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Pavithra Pathirathna;Ryan J. Balla;Guanqun Meng;Zemeng Wei;Shigeru Amemiya
  • 通讯作者:
    Shigeru Amemiya
Transient theory for scanning electrochemical microscopy of biological membrane transport: uncovering membrane–permeant interactions
  • DOI:
    10.1039/d4an00411f
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Siao-Han Huang;Shigeru Amemiya
  • 通讯作者:
    Shigeru Amemiya

Shigeru Amemiya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shigeru Amemiya', 18)}}的其他基金

Nanogap Electrochemistry of Adsorption-Coupled Electron Transfer
吸附耦合电子转移的纳米间隙电化学
  • 批准号:
    1904258
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Nanogap Electrochemistry of Clean Graphitic Surfaces
清洁石墨表面的纳米间隙电化学
  • 批准号:
    1608703
  • 财政年份:
    2016
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Nanogap Electrochemistry of Interfacial Charge-Transfer Reactions
界面电荷转移反应的纳米间隙电化学
  • 批准号:
    1213452
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAREER: Voltammetric Ion-Selective Electrode for Biological Polyions and Beyond
职业:用于生物聚离子及其他领域的伏安离子选择电极
  • 批准号:
    0645623
  • 财政年份:
    2007
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Electrochemical/Optical Nanoprobes for High-Resolution Chemical Analysis at Neuronal Microenvironment
用于神经元微环境高分辨率化学分析的电化学/光学纳米探针
  • 批准号:
    0242561
  • 财政年份:
    2003
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

半导体气凝胶电化学晶体管离子传输调控及葡萄糖传感增敏机制
  • 批准号:
    62374113
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
原位构筑双活性位纳米多孔铜基合金及其电化学还原硝酸根串联催化机制的研究
  • 批准号:
    52371232
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
异质结构介孔原子筏催化剂的构筑和电化学析氢性能研究
  • 批准号:
    22375048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物电化学强化人工湿地中电极氨氧化的反应机理与优化调控
  • 批准号:
    52370160
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
过硫酸铵介导烟气硫硝资源电化学协同转化利用研究
  • 批准号:
    22366022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Quantifying Surface Chemical Intermediates and Interfacial Redox Processes via Combined Raman Spectroscopy and Scanning Electrochemical Microscopy
通过拉曼光谱和扫描电化学显微镜相结合量化表面化学中间体和界面氧化还原过程
  • 批准号:
    2004054
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Developing High Speed Scanning Electrochemical Microscopy of Biological Substrates
开发生物基质的高速扫描电化学显微镜
  • 批准号:
    RGPIN-2015-06054
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Developing High Speed Scanning Electrochemical Microscopy of Biological Substrates
开发生物基质的高速扫描电化学显微镜
  • 批准号:
    RGPIN-2015-06054
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an automated system to assess the embryo quality based on scanning electrochemical microscopy
开发基于扫描电化学显微镜评估胚胎质量的自动化系统
  • 批准号:
    19H04481
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Operando imaging of solid state electrochemical interfaces using scanning thermo-ionic microscopy
使用扫描热离子显微镜对固态电化学界面进行操作成像
  • 批准号:
    1708376
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了