CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
基本信息
- 批准号:1717885
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, graph processing received intensive interests in light of a wide range of needs to understand relationships. Graph analytics are widely used in key domains in our society, such as cyber security, social media, infrastructure monitoring (e.g., smart building), natural language processing, system biology, recommendation systems. These important applications all fall into fast-growing sectors in computer science and engineering research. On the other hand, in many emerging applications, the graph analytics are ideally performed in the edge (e.g., a mobile or embedded system) in order to allow the relationships between events to be discovered in the field where they are unfold. Unfortunately, the existing embedded systems equipped with conventional computing units like CPU/GPU cannot efficiently process large graphs in real time. Instead, large data centers are required to perform the graph processing, either incurring extra latency and energy due to data communication or only providing forensic (offline) graph analysis. This research aims to effectively enable graph analytics in embedded system with disruptive emerging technology. To support graph analytic applications with the limited hardware resources in embedded systems, this project seeks to develop GAMBIT -- a memristor-based embedded computing framework for efficient graph processing. Our research program aims to develop multi-layer techniques to enable highly efficient (e.g., 1000X) and scalable real-time graph analytics in embedded systems (i.e., network edge). It contains research efforts across circuit, architecture, system and vertical integration. (1) At the circuit level, the project proposes a memristor-based graph computing core to enable efficient computations for graph processing. (2) At the architecture level, the project proposes the complete memristor-based graph processing architecture for partitioned graph and various algorithms. (3) At the system level, the project develops a graph analytics framework for embedded systems and integrates it with a popular embedded OS. (4) For integration, the project proposes to develop an emulator of the proposed architecture and cross-layer HW/SW co-design techniques. This project contributes to society through engaging high-school and undergraduate students from minority-serving institutions into research, attracting women and under-represented groups into graduate education, expanding the computer engineering curriculum with graph processing and other emerging applications in embedded systems, disseminating research infrastructure for education and training, and collaborating with the industry.
最近,根据了解关系的广泛需求,图形处理获得了密集的兴趣。图分析被广泛用于我们社会的关键领域,例如网络安全,社交媒体,基础设施监控(例如智能建筑),自然语言处理,系统生物学,推荐系统。这些重要的应用都属于计算机科学和工程研究中快速增长的领域。另一方面,在许多新兴应用中,理想情况下,图形分析是在边缘(例如移动或嵌入式系统)中执行的,以允许在展开的现场发现事件之间的关系。不幸的是,配备了常规计算单元(例如CPU/GPU)的现有嵌入式系统无法实时处理大图。取而代之的是,需要大的数据中心执行图形处理,要么由于数据通信而产生额外的延迟和能量,要么仅提供法医(离线)图分析。这项研究旨在通过破坏性的新兴技术有效地启用嵌入式系统中的图形分析。为了支持嵌入式系统中有限的硬件资源的图形分析应用程序,该项目旨在开发Gambit,这是一种基于Memristor的嵌入式计算框架,用于有效的图形处理。我们的研究计划旨在开发多层技术,以实现嵌入式系统(即网络边缘)中高效(例如1000x)和可扩展的实时图分析。它包含跨电路,建筑,系统和垂直整合的研究工作。 (1)在电路级别,该项目提出了一个基于备忘录的图表核心,以实现图形处理的有效计算。 (2)在体系结构级别,该项目提出了针对分区图和各种算法的完整基于Memristor的图形处理体系结构。 (3)在系统级别,该项目为嵌入式系统开发了一个图形分析框架,并将其与流行的嵌入式OS集成在一起。 (4)为集成,该项目提议开发拟议的体系结构和跨层HW/SW/SW共同设计技术的模拟器。该项目通过将来自少数派服务机构的高中生和本科生吸引研究,从而为社会做出贡献,吸引妇女和代表性不足的群体参加研究生教育,从而扩大了计算机工程课程,并在嵌入式系统中使用图形处理和其他出现的应用程序进行了研究,并将研究基础结构用于教育和培训和培训和培训,并与该行业进行了培训。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallelism in Deep Learning Accelerators
- DOI:10.1109/asp-dac47756.2020.9045206
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Linghao Song;Fan Chen;Yiran Chen;H. Li
- 通讯作者:Linghao Song;Fan Chen;Yiran Chen;H. Li
AccPar: Tensor Partitioning for Heterogeneous Deep Learning Accelerators
- DOI:10.1109/hpca47549.2020.00036
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Linghao Song;Fan Chen;Youwei Zhuo;Xuehai Qian;H. Li;Yiran Chen
- 通讯作者:Linghao Song;Fan Chen;Youwei Zhuo;Xuehai Qian;H. Li;Yiran Chen
HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array
- DOI:10.1109/hpca.2019.00027
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Linghao Song;Jiachen Mao;Youwei Zhuo;Xuehai Qian;Hai Helen Li;Yiran Chen
- 通讯作者:Linghao Song;Jiachen Mao;Youwei Zhuo;Xuehai Qian;Hai Helen Li;Yiran Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Concurrent pulmonary benign metastasizing leiomyoma and primary lung adenocarcinoma: a case report.
并发肺良性转移性平滑肌瘤和原发性肺腺癌:病例报告。
- DOI:
10.21037/acr.2018.04.03 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aiping Chen;Tao Sun;Xuehui Pu;Hai Li;Tong;Hong Yu - 通讯作者:
Hong Yu
Inter-rater and Intra-rater Reliability of the Chinese Version of the Action Research Arm Test in People With Stroke
中国版脑卒中患者行动研究手臂测试的评估者间和评估者内信度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Jiang;Peiming Chen;Tao Zhang;Hai Li;Qiang Lin;Yurong Mao;Dongfeng Huang - 通讯作者:
Dongfeng Huang
Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation
H2O2、Na2S2O8 和 NaClO 氧化溶解富碳酸盐页岩和富硅酸盐页岩的实验研究:对氧化刺激页岩气采收的启示
- DOI:
10.1016/j.jngse.2020.103207 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sen Yang;Danqing Liu;Yilian Li;Cong Yang;Zhe Yang;Xiaohong Chen;Hai Li;Zhi Tang - 通讯作者:
Zhi Tang
Neural architecture search for in-memory computing-based deep learning accelerators
基于内存计算的深度学习加速器的神经架构搜索
- DOI:
10.1038/s44287-024-00052-7 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
O. Krestinskaya;M. Fouda;Hadjer Benmeziane;Kaoutar El Maghraoui;Abu Sebastian;Wei D. Lu;M. Lanza;Hai Li;Fadi J. Kurdahi;Suhaib A. Fahmy;Ahmed M. Eltawil;K. N. Salama - 通讯作者:
K. N. Salama
Cassini Oval Scanning for High-Speed AFM Imaging
用于高速 AFM 成像的卡西尼椭圆形扫描
- DOI:
10.1109/wcmeim56910.2022.10021465 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Y. Liao;Xianmin Zhang;Longhuan Yu;J. Lai;Benliang Zhu;Hai Li;Zhuobo Yang;Chaoyu Cui;Ke Feng - 通讯作者:
Ke Feng
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
- 批准号:
2233808 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
- 批准号:
2040588 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
- 批准号:
1910299 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321225 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314680 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant