FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips

FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理

基本信息

  • 批准号:
    1910299
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Moving machine learning techniques from the computing cloud down to edge computing nodes closer to the user is highly desirable in many use cases that require quick responses from the collected data sets. A typical use scenario is multi-task applications where a cloud server retains well-trained large-scale models, which are deployed in edge devices based on specific local needs. Examples include language translation or speech recognition with accents in multi-language audio conferences. However, supporting multi-task application on edge devices is challenging due to the associated high computational cost and large variety of involved models. Very little effort has been spent on the corresponding hardware design, especially for supporting multi-task speech and natural language processing (NLP) applications on edge compute devices. This research aims to design a novel computing system dedicated to such multi-task applications, particularly on accelerating speech/NLP, by combining innovations in both algorithm and hardware domains. The study benefits big data research, and industry at large by inspiring an interactive design philosophy between the designs of speech/NLP algorithms and the corresponding computing platforms. Undergraduate and graduate students involved in this research will be trained for the next-generation information technology workforce. Different from conventional edge computing devices that mainly focuses on balancing the workloads between the cloud and the edge devices and optimizing the communication in between, this project concentrates on how to efficiently decompose and compress the task-specific sub-models extracted from a large multi-task model in the cloud so that deployment of the edge devices meet the functionality and performance needs under the specific hardware constraint. More specifically, the algorithm-level innovations enable a decomposable speech/NLP model that always assures proper function and performance in resource-limited edge devices, while the hardware-level innovations allow these devices to efficiently support speech/NLP multi-task applications and unleash the great potential of Resistive Random Access Memory (ReRAM)-based computing platforms. During the real-time operation, the model on the edge device can be scaled-up or shrunk-down to accommodate the dynamic hardware environment and user needs. The research leads to a holistic methodology across algorithm redesign, hardware acceleration, and an integrated software/hardware co-design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多需要从收集的数据集快速响应的用例中,将机器学习技术从计算云转移到更靠近用户的边缘计算节点是非常可取的。典型的使用场景是多任务应用程序,其中云服务器保留经过良好训练的大规模模型,这些模型根据特定的本地需求部署在边缘设备中。 示例包括多语言音频会议中的语言翻译或带口音的语音识别。然而,由于相关的高计算成本和大量涉及的模型,在边缘设备上支持多任务应用程序具有挑战性。在相应的硬件设计上花费的精力很少,特别是在支持边缘计算设备上的多任务语音和自然语言处理(NLP)应用方面。本研究旨在通过结合算法和硬件领域的创新,设计一种专用于此类多任务应用的新型计算系统,特别是加速语音/NLP。该研究通过激发语音/NLP 算法设计与相应计算平台之间的交互设计理念,使大数据研究和整个行业受益。参与这项研究的本科生和研究生将接受下一代信息技术劳动力的培训。与传统的边缘计算设备主要关注平衡云端和边缘设备之间的工作负载并优化两者之间的通信不同,该项目专注于如何有效地分解和压缩从大型多目标中提取的特定于任务的子模型。云中的任务模型,以便边缘设备的部署满足特定硬件约束下的功能和性能需求。更具体地说,算法级创新实现了可分解的语音/NLP模型,始终确保资源有限的边缘设备的正常功能和性能,而硬件级创新使这些设备能够有效支持语音/NLP多任务应用程序并释放基于电阻式随机存取存储器 (ReRAM) 的计算平台的巨大潜力。在实时操作过程中,边缘设备上的模型可以放大或缩小,以适应动态的硬件环境和用户需求。该研究形成了涵盖算法重新设计、硬件加速和集成软件/硬件协同设计的整体方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huanrui Yang;Lin Duan;Yiran Chen;Hai Li
  • 通讯作者:
    Huanrui Yang;Lin Duan;Yiran Chen;Hai Li
SpikeSen: Low-Latency In-Sensor-Intelligence Design With Neuromorphic Spiking Neurons
SpikeSen:具有神经形态尖峰神经元的低延迟传感器内智能设计
Processing-in-Memory Technology for Machine Learning: From Basic to ASIC
用于机器学习的内存处理技术:从基础到 ASIC
ReBoc: Accelerating Block-Circulant Neural Networks in ReRAM
Parallelism in Deep Learning Accelerators
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hai Li其他文献

Genetic Polymorphism in the RYR1 C6487T Is Associated with Severity of Hypospadias in Chinese Han Children
RYR1 C6487T基因多态性与中国汉族儿童尿道下裂严重程度相关
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyan Zhang;Zhuo Zhang;Linpei Jia;Wei;Hai Li
  • 通讯作者:
    Hai Li
Structural knowledge error, rather than reward insensitivity, explains the reduced metacontrol in aging
结构性知识错误,而不是奖励不敏感,解释了衰老过程中元控制的减少
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoyu Zuo;Lizhuang Yang;Hai Li
  • 通讯作者:
    Hai Li
Implementation of Classic McEliece key generation based on Goppa binary code
基于Goppa二进制码的Classic McEliece密钥生成的实现
Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors
缺氧靶向碳纳米管作为肿瘤光声成像的敏感造影剂
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Zanganeh;A. Aguirre;N. Biswal;Christopher M Pavlik;Michael B. Smith;Umar S. Alqasemi;Hai Li;Quing Zhu
  • 通讯作者:
    Quing Zhu
Design and Realization of Semaphore for a Sensor Network Operating System
传感器网络操作系统信号量的设计与实现
  • DOI:
    10.4028/www.scientific.net/amm.644-650.3917
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Zhou;Hai Li
  • 通讯作者:
    Hai Li

Hai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hai Li', 18)}}的其他基金

Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
  • 批准号:
    2233808
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
  • 批准号:
    1955196
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
  • 批准号:
    2040588
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1744082
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717885
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1615475
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1337198
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
  • 批准号:
    1311747
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
  • 批准号:
    82301663
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于丢番图方程小素数解上界估计的研究
  • 批准号:
    12301005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
  • 批准号:
    82371119
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Investigating Enlarged Perivascular Spaces as a Neuroimaging Biomarker of Cerebral Small Vessel Disease
研究扩大的血管周围空间作为脑小血管疾病的神经影像生物标志物
  • 批准号:
    10674098
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
  • 批准号:
    10680109
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了