Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
基本信息
- 批准号:1955196
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced computing systems have long been enablers for breakthroughs in science, engineering, and new technologies. However, with the slowing down of Moore’s law and the relentless needs of Big-Data applications, e.g., deep learning, graph analytics, and scientific simulations, current solutions are not adequate. There is a need for innovative computer architectures and computationally efficient methods to design application-specific hardware systems to optimize performance, power consumption, and reliability. The main focus of this work is design and demonstration of a heterogeneous single-chip manycore platform, integrating CPU, GPU, accelerator, and memory cores, via a network-on-chip to avoid expensive off-chip data transfers. The goal of this project is to address the design of application-specific heterogeneous manycore systems that are poised to achieve unprecedented levels of performance and energy-efficiency for Big-Data applications. The PIs will disseminate research outcomes via publications, seminars, tutorials, and workshops. The project is also leading to the development of an interdisciplinary research-based curriculum integrating computer architectures, machine learning, and data-driven design optimization. Undergraduate and graduate students involved in this research will be trained to apply classroom knowledge to research problems that require next-generation hardware, software, and theoretical expertise. The project will lay the foundations for a novel computing paradigm for Big-Data applications that allows us to quickly design and autonomously self-manage heterogeneous manycore computing systems to improve performance, reduce power consumption, and enhance reliability. In-memory processing can overcome the memory wall, but it introduces new challenges in overall application-specific system optimization. The specific research tasks include: 1) Data-driven multi-objective design space exploration and optimization algorithms for heterogeneous manycore architectures; 2) Reliability assessment and system design for reliability; 3) Structured learning framework for autonomous resource management; and 4) Performance, power, and reliability evaluation using emerging Big-Data application workloads. This framework will combine the benefits of multi-objective design space exploration and optimization, heterogeneity in computation and communication, and data-driven algorithms to improve performance, energy-efficiency, and reliability of manycore platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长期以来,先进的计算系统一直是科学、工程和新技术突破的推动者,然而,随着摩尔定律的放缓和大数据应用(例如深度学习、图形分析和科学模拟)的不断需求,当前的计算系统已经成为科学、工程和新技术突破的推动力。需要创新的计算机架构和计算高效的方法来设计专用硬件系统,以优化性能、功耗和可靠性。这项工作的主要重点是异构单芯片的设计和演示。众核该项目的目标是解决专用异构众核系统的设计问题,通过片上网络集成 CPU、GPU、加速器和内存核心,以避免昂贵的片外数据传输。 PI 将通过出版物、研讨会、教程和讲习班传播研究成果,以实现大数据应用的前所未有的性能和能源效率。参与这项研究的本科生和研究生将接受培训,将课堂知识应用于需要下一代硬件、软件和理论专业知识的研究问题。一种针对大数据应用的新颖计算范式,使我们能够快速设计和自主管理异构多核计算系统,以提高性能、降低功耗并增强可靠性。内存处理可以克服内存墙,但它引入了新的技术。整个特定应用系统的挑战具体研究任务包括:1)异构众核架构的数据驱动的多目标设计空间探索和优化算法;2)可靠性评估和系统设计;3)自主资源管理的结构化学习框架;使用新兴大数据应用工作负载进行性能、功耗和可靠性评估该框架将结合多目标设计空间探索和优化、计算和通信异构性以及数据驱动算法的优点,以提高性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Computing and the Efficient Machine Learning Expedition
- DOI:10.1145/3508352.3561105
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
- 通讯作者:J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
High-Throughput Training of Deep CNNs on ReRAM-Based Heterogeneous Architectures via Optimized Normalization Layers
通过优化的归一化层在基于 ReRAM 的异构架构上进行深度 CNN 的高吞吐量训练
- DOI:10.1109/tcad.2021.3083684
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Joardar, Biresh Kumar;Deshwal, Aryan;Doppa, Janardhan Rao;Pande, Partha Pratim;Chakrabarty, Krishnendu
- 通讯作者:Chakrabarty, Krishnendu
DARe: DropLayer-Aware Manycore ReRAM architecture for Training Graph Neural Networks
- DOI:10.1109/iccad51958.2021.9643511
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Aqeeb Iqbal Arka;B. K. Joardar;J. Doppa;P. Pande;K. Chakrabarty
- 通讯作者:Aqeeb Iqbal Arka;B. K. Joardar;J. Doppa;P. Pande;K. Chakrabarty
ReTransformer: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration
- DOI:10.1145/3400302.3415640
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Xiaoxuan Yang;Bonan Yan;H. Li;Yiran Chen
- 通讯作者:Xiaoxuan Yang;Bonan Yan;H. Li;Yiran Chen
Multi-Objective Optimization of ReRAM Crossbars for Robust DNN Inferencing under Stochastic Noise
- DOI:10.1109/iccad51958.2021.9643444
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Xiaoxuan Yang;Syrine Belakaria;B. K. Joardar;Huanrui Yang;J. Doppa;P. Pande;K. Chakrabarty;Hai Li
- 通讯作者:Xiaoxuan Yang;Syrine Belakaria;B. K. Joardar;Huanrui Yang;J. Doppa;P. Pande;K. Chakrabarty;Hai Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Concurrent pulmonary benign metastasizing leiomyoma and primary lung adenocarcinoma: a case report.
并发肺良性转移性平滑肌瘤和原发性肺腺癌:病例报告。
- DOI:
10.21037/acr.2018.04.03 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aiping Chen;Tao Sun;Xuehui Pu;Hai Li;Tong;Hong Yu - 通讯作者:
Hong Yu
Inter-rater and Intra-rater Reliability of the Chinese Version of the Action Research Arm Test in People With Stroke
中国版脑卒中患者行动研究手臂测试的评估者间和评估者内信度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Jiang;Peiming Chen;Tao Zhang;Hai Li;Qiang Lin;Yurong Mao;Dongfeng Huang - 通讯作者:
Dongfeng Huang
Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation
H2O2、Na2S2O8 和 NaClO 氧化溶解富碳酸盐页岩和富硅酸盐页岩的实验研究:对氧化刺激页岩气采收的启示
- DOI:
10.1016/j.jngse.2020.103207 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sen Yang;Danqing Liu;Yilian Li;Cong Yang;Zhe Yang;Xiaohong Chen;Hai Li;Zhi Tang - 通讯作者:
Zhi Tang
Neural architecture search for in-memory computing-based deep learning accelerators
基于内存计算的深度学习加速器的神经架构搜索
- DOI:
10.1038/s44287-024-00052-7 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
O. Krestinskaya;M. Fouda;Hadjer Benmeziane;Kaoutar El Maghraoui;Abu Sebastian;Wei D. Lu;M. Lanza;Hai Li;Fadi J. Kurdahi;Suhaib A. Fahmy;Ahmed M. Eltawil;K. N. Salama - 通讯作者:
K. N. Salama
Cassini Oval Scanning for High-Speed AFM Imaging
用于高速 AFM 成像的卡西尼椭圆形扫描
- DOI:
10.1109/wcmeim56910.2022.10021465 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Y. Liao;Xianmin Zhang;Longhuan Yu;J. Lai;Benliang Zhu;Hai Li;Zhuobo Yang;Chaoyu Cui;Ke Feng - 通讯作者:
Ke Feng
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
- 批准号:
2233808 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
- 批准号:
2040588 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
- 批准号:
1910299 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
- 批准号:
1717885 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
体细胞突变诱导的壁细胞缺陷在中枢神经系统血管畸形出血中的作用机制及干预研究
- 批准号:82330038
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant