Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing

合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算

基本信息

  • 批准号:
    1955196
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Advanced computing systems have long been enablers for breakthroughs in science, engineering, and new technologies. However, with the slowing down of Moore’s law and the relentless needs of Big-Data applications, e.g., deep learning, graph analytics, and scientific simulations, current solutions are not adequate. There is a need for innovative computer architectures and computationally efficient methods to design application-specific hardware systems to optimize performance, power consumption, and reliability. The main focus of this work is design and demonstration of a heterogeneous single-chip manycore platform, integrating CPU, GPU, accelerator, and memory cores, via a network-on-chip to avoid expensive off-chip data transfers. The goal of this project is to address the design of application-specific heterogeneous manycore systems that are poised to achieve unprecedented levels of performance and energy-efficiency for Big-Data applications. The PIs will disseminate research outcomes via publications, seminars, tutorials, and workshops. The project is also leading to the development of an interdisciplinary research-based curriculum integrating computer architectures, machine learning, and data-driven design optimization. Undergraduate and graduate students involved in this research will be trained to apply classroom knowledge to research problems that require next-generation hardware, software, and theoretical expertise. The project will lay the foundations for a novel computing paradigm for Big-Data applications that allows us to quickly design and autonomously self-manage heterogeneous manycore computing systems to improve performance, reduce power consumption, and enhance reliability. In-memory processing can overcome the memory wall, but it introduces new challenges in overall application-specific system optimization. The specific research tasks include: 1) Data-driven multi-objective design space exploration and optimization algorithms for heterogeneous manycore architectures; 2) Reliability assessment and system design for reliability; 3) Structured learning framework for autonomous resource management; and 4) Performance, power, and reliability evaluation using emerging Big-Data application workloads. This framework will combine the benefits of multi-objective design space exploration and optimization, heterogeneity in computation and communication, and data-driven algorithms to improve performance, energy-efficiency, and reliability of manycore platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长期以来,先进的计算系统一直是科学,工程和新技术突破的推动力。但是,随着摩尔定律的放缓以及大数据应用程序的无情需求,例如深度学习,图形分析和科学模拟,当前的解决方案不足。需要创新的计算机体系结构和计算有效的方法来设计特定于应用程序的硬件系统,以优化性能,功耗和可靠性。这项工作的主要重点是设计和演示异质的单芯片多核平台,通过网络芯片进行集成CPU,GPU,加速器和内存核心,以避免使用昂贵的芯片外数据传输。该项目的目的是解决特定应用的异质多核系统的设计,这些系统被中毒以达到前所未有的绩效和能源效率的大数据应用程序。 PI将通过出版物,半手,教程和研讨会来传播研究成果。该项目还导致开发基于跨学科的基于研究的课程,该课程整合了计算机架构,机器学习和数据驱动的设计优化。参与这项研究的本科生和研究生将接受培训,以将课堂知识应用于需要下一代硬件,软件和理论专业知识的研究问题。该项目将为大数据应用程序的新型计算范式奠定基础,这使我们能够快速设计和自主自主自我管理的许多核心计算系统,以提高性能,降低功耗和增强可靠性。内存处理可以克服内存墙,但它引入了整体应用系统优化的新挑战。特定的研究任务包括:1)数据驱动的多目标设计空间探索和优化算法,用于异质多核体系结构; 2)可靠性评估和系统设计; 3)自主资源管理的结构化学习框架; 4)使用新兴的大数据应用程序工作负载进行性能,功率和可靠性评估。该框架将结合多目标设计空间探索和优化的好处,计算和沟通中的异质性以及数据驱动的算法,以提高绩效,能源效率和许多核平台的可靠性。该奖项反映了NSF的法规任务,并通过评估通过基金会的知识优点和广泛的criitia crietia crietia crietia crietia criter criter crietia crietia criitia crietia criitia crietia crietia crietia crietia crietia crietia crietia crietia cripitia cripitia cripitia cripitia均被认为是宝贵的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Computing and the Efficient Machine Learning Expedition
  • DOI:
    10.1145/3508352.3561105
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
  • 通讯作者:
    J. Henkel;Hai Helen Li;A. Raghunathan;M. Tahoori;Swagath Venkataramani;Xiaoxuan Yang;Georgios Zervakis
High-Throughput Training of Deep CNNs on ReRAM-Based Heterogeneous Architectures via Optimized Normalization Layers
通过优化的归一化层在基于 ReRAM 的异构架构上进行深度 CNN 的高吞吐量训练
DARe: DropLayer-Aware Manycore ReRAM architecture for Training Graph Neural Networks
ReTransformer: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration
ReaLPrune: ReRAM Crossbar-Aware Lottery Ticket Pruning for CNNs
  • DOI:
    10.1109/tetc.2022.3223630
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    B. K. Joardar;J. Doppa;Hai Helen Li;K. Chakrabarty;P. Pande
  • 通讯作者:
    B. K. Joardar;J. Doppa;Hai Helen Li;K. Chakrabarty;P. Pande
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hai Li其他文献

Concurrent pulmonary benign metastasizing leiomyoma and primary lung adenocarcinoma: a case report.
并发肺良性转移性平滑肌瘤和原发性肺腺癌:病例报告。
  • DOI:
    10.21037/acr.2018.04.03
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aiping Chen;Tao Sun;Xuehui Pu;Hai Li;Tong;Hong Yu
  • 通讯作者:
    Hong Yu
Inter-rater and Intra-rater Reliability of the Chinese Version of the Action Research Arm Test in People With Stroke
中国版脑卒中患者行动研究手臂测试的评估者间和评估者内信度
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jiang;Peiming Chen;Tao Zhang;Hai Li;Qiang Lin;Yurong Mao;Dongfeng Huang
  • 通讯作者:
    Dongfeng Huang
Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation
H2O2、Na2S2O8 和 NaClO 氧化溶解富碳酸盐页岩和富硅酸盐页岩的实验研究:对氧化刺激页岩气采收的启示
  • DOI:
    10.1016/j.jngse.2020.103207
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Yang;Danqing Liu;Yilian Li;Cong Yang;Zhe Yang;Xiaohong Chen;Hai Li;Zhi Tang
  • 通讯作者:
    Zhi Tang
Neural architecture search for in-memory computing-based deep learning accelerators
基于内存计算的深度学习加速器的神经架构搜索
  • DOI:
    10.1038/s44287-024-00052-7
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Krestinskaya;M. Fouda;Hadjer Benmeziane;Kaoutar El Maghraoui;Abu Sebastian;Wei D. Lu;M. Lanza;Hai Li;Fadi J. Kurdahi;Suhaib A. Fahmy;Ahmed M. Eltawil;K. N. Salama
  • 通讯作者:
    K. N. Salama
Cassini Oval Scanning for High-Speed AFM Imaging
用于高速 AFM 成像的卡西尼椭圆形扫描

Hai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hai Li', 18)}}的其他基金

Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
  • 批准号:
    2233808
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
  • 批准号:
    2040588
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
  • 批准号:
    1910299
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1744082
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717885
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
  • 批准号:
    1615475
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1337198
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
  • 批准号:
    1311747
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
    82201491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
  • 批准号:
    82101506
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
  • 批准号:
    32160834
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了