Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
基本信息
- 批准号:2321225
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proliferation of multiple cores on the chip has signaled the advent of communication-centric, rather than computation-centric systems. Consequently, the design of low latency, high bandwidth, power-efficient, and reliable Network-on-Chips (NoCs) is proving to be one of the most critical challenges to achieving the performance potential of future multicore systems. However, as multicores are facilitating an enormous integration capacity, rapid transistor scaling has led to a steady degradation of the device and circuit reliability: unpredictable device behavior will undeniably increase and will result in a significant increase in faults (both permanent and transient), and hardware failures. The ramifications for the NoC are immense: a single fault in the NoC may paralyze the working of the entire chip. While considerable efforts are undertaken to tackle the reliability challenge of NoCs, most current solutions concentrate on local optimizations within the entire NoC abstractions (e.g., circuit, message, and network layers). These solutions tend to possess limited knowledge of the overall system and are therefore reactive in behavior, making worst-case assumptions and overprovisioning, and as a result, they introduce significant power, area, and performance overheads while not completely solving the reliability challenge.This research project tackles the critical NoC reliability challenge by developing a comprehensive, cooperative, and adaptive multi-layer approach for designing reliable NoCs from fault-susceptible components, with globally-optimized power, performance, and costs. To achieve this research goal, this project is organized into four interrelated research tasks. First, this research project conducts a comprehensive study of the fundamental mechanisms that underlie the reliability issues across NoC abstractions. A detailed analysis of the dynamic interactions of NoC abstractions and design trade-offs. Second, the research project develops a cross-layer NoC architecture for resilient on-chip communication with machine-learning-based optimization. Third, this research project aims to incorporate the application layer and off-chip communications and develops a holistic design framework that can automatically capture and adapt to the various computation and communication requirements of different applications with optimized performance, power, and reliability. Finally, the project evaluates the designed framework by developing a cycle-accurate simulation framework and an FPGA prototype. This project will significantly advance the fundamental understanding of the interplay between the NoC and the rest of the components on the chip (cores, memory, etc.) as well as design tradeoffs between performance, power, reliability, and cost in future massively defective nanometer technologies. The developed NoC framework will benefit future multi-core architectures and computing systems with system-level performance and reliability improvements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
芯片上多个核心的扩散表明以通信为中心而不是以计算为中心的系统的出现。因此,低潜伏期,较高的带宽,效力和可靠的网络(NOC)的设计被证明是实现未来多核心系统的性能潜力的最关键挑战之一。但是,随着多学院正在促进巨大的集成能力,快速晶体管缩放导致设备的稳定下降和电路可靠性:不可预测的设备行为将不可否认地增加,并且会导致故障(永久和瞬态)和硬件故障的故障显着增加。 NOC的后果是巨大的:NOC中的单个故障可能会使整个芯片的工作瘫痪。尽管为应对NOC的可靠性挑战而竭尽全力,但当前大多数解决方案都集中在整个NOC抽象(例如电路,消息和网络层)中的本地优化。这些解决方案倾向于对整个系统具有有限的知识,因此在行为上具有反应性,使最坏的假设和过度覆盖能力,因此,它们引入了重要的能力,区域和性能间接费用,而不是完全解决可靠性挑战。本研究项目通过与全面的合作和适应性的构建方法来应对重要的NOC可靠性挑战,以实现合作和适应性的构图,并确定了适度的构图,该方法是在适当的挑战中,该研究项目的设计项目是合作,适度的,该方法的设计项目,并确定了适应性的构图。全球优化的功率,性能和成本。为了实现这一研究目标,该项目被组织成四个相互关联的研究任务。首先,该研究项目对基本机制进行了全面研究,这些基本机制是NOC抽象跨越可靠性问题的基础。对NOC抽象和设计权衡的动态相互作用的详细分析。其次,研究项目开发了一种跨层NOC体系结构,用于具有基于机器学习的优化的弹性芯片通信。第三,该研究项目旨在结合应用层和芯片外通信,并开发一个整体设计框架,可以自动捕获并适应具有优化性能,功率和可靠性的不同应用程序的各种计算和通信要求。最后,该项目通过开发循环精确的仿真框架和FPGA原型来评估设计的框架。该项目将大大提高对NOC与芯片(内核,内存等)中其余组件之间相互作用的基本理解,以及在未来的大量缺陷纳米技术中的性能,功率,能力,可靠性和成本之间的设计权衡。开发的NOC框架将使未来的多核架构和计算系统受益于系统级的性能和可靠性改进。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ke Wang其他文献
A robot navigation method based on human-robot interaction for 3D environment mapping
一种基于人机交互的3D环境测绘机器人导航方法
- DOI:
10.1109/rcar.2017.8311896 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lijun Zhao;Xiaoyu Li;Zhenye Sun;Ke Wang;Chenguang Yang - 通讯作者:
Chenguang Yang
Inguinal incision as a successful route to extract the kidney during laparoscopic retroperitoneal live-donor nephrectomy.
腹股沟切口是腹腔镜腹膜后活体供体肾切除术中提取肾脏的成功途径。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.9
- 作者:
Ke Wang;Dong;Lin Wang;Chun;Chang;Feng;Hui Wang;Zhen‐li Gao - 通讯作者:
Zhen‐li Gao
Retraction. The fibronectin EDA splicing variant induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K and Erk.
纤连蛋白 EDA 剪接变体通过整合素 α9β1 介导的 PI3-K 和 Erk 激活诱导肺癌细胞上皮-间质转化。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Xiaojuan Sun;J. Ritzenthaler;Ke Wang;Xiaorong Zhong;E. White;Shouwei Han;J. Roman - 通讯作者:
J. Roman
High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.
具有广播功能的基于高速自由空间的可重构卡对卡光学互连。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.8
- 作者:
Ke Wang;A. Nirmalathas;C. Lim;E. Skafidas;K. Alameh - 通讯作者:
K. Alameh
Study on time-resolution measurement of gas components under strong impact vibration
强冲击振动下气体成分时间分辨率测量研究
- DOI:
10.1117/12.2639977 - 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Zhenjie Wu;Zhenrong Zhang;Jingfeng Ye;Jun Shao;Mengmeng Tao;Sheng Wang;Guohua Li;Ke Wang;Haolong Wu - 通讯作者:
Haolong Wu
Ke Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ke Wang', 18)}}的其他基金
CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications
CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信
- 批准号:
2245950 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Mesoscopic Quantum Opto-Electronics in Gate-Defined Transition Metal Dichacogenide Nanostructures
职业:栅极定义的过渡金属二硫族化物纳米结构中的介观量子光电子学
- 批准号:
1944498 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
善行得善果?后疫情时代嵌入式和边缘式CSR对员工幸福感的跨层影响研究
- 批准号:72102183
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
善行得善果?后疫情时代嵌入式和边缘式CSR对员工幸福感的跨层影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于脊髓突触可塑性探讨“调气”电针远端腧穴干预CSR模型大鼠的中枢镇痛效应及机制研究
- 批准号:82160934
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
利用输运模型和机器学习方法研究CSR能区的低温高密核物质
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
基于兰州HIRFL-CSR装置对轻原子核的团簇结构及晕结构的理论研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant