CAREER: Mesoscopic Quantum Opto-Electronics in Gate-Defined Transition Metal Dichacogenide Nanostructures

职业:栅极定义的过渡金属二硫族化物纳米结构中的介观量子光电子学

基本信息

  • 批准号:
    1944498
  • 负责人:
  • 金额:
    $ 59.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The electronic properties of a solid can undergo dramatic change when its thickness is reduced to the atomic limit. A family of semiconductors with single-atom thickness, transition metal dichalcogenides (TMD), host unique electronic and optical properties that can potentially provide solutions to many remaining challenges in future electronics and computing platforms. This CAREER project investigates these novel material properties with versatile experimental control, towards understanding and harnessing them in realizing novel device concepts with improved performance and operation schemes. The research underpins electronic device applications that can be particularly relevant in low energy electronics and sensing. If successful, the project also lays a foundation towards future semiconductor-based computing platforms that promises (1) smaller device dimensions and higher-level integration, (2) new computation paradigms with higher computational power and efficiency, and (3) new communication protocols with enhanced information security. Multiple graduate students, and undergraduates are being educated through this project in an interdisciplinary research environment. A series of educational and outreach efforts are being implemented, aimed towards enhanced training of the next generation scientific and engineering work-force, including (1) development of a new course on device physics directed towards an interdisciplinary student audience, (2) enhancing the well-established "Method for Experimental Physics" course by providing a new module of low-temperature physics experiments for physics undergraduate students, (3) and recruitment of underrepresented groups into interdisciplinary research and partnership with the Science Museum of Minnesota on K-12 education and outreach, promoting public awareness toward the advanced nanotechnologies and solid-state physics. Electron spins – a form of quantized angular momentum, are widely used to define the 0 and 1 states of a single quantum bit. In transition metal dichalcogenides (TMDs), the electron spin is effectively locked to another quantum degree of freedom, valley. This provides new ways of defining and manipulating a spin-valley quantum bit with potentially enhanced life time and robustness, as it is much more difficult to accidentally flip the valley quantum degree of freedom with electrical and magnetic fluctuations. In addition, the in-plane electrostatic interactions in TMDs are much stronger compared to conventional semiconductors, allowing controllable light-matter interaction. This can be utilized to convert the electronic quantum information to photonic states, a process essential for long distance quantum communication between future electronic quantum computers. This CAREER research focuses on studying exotic quantum phenomena in gate-defined TMD nanostructures via electrical and optical quantum measurements and providing proof-of-principle demonstration of new quantum device functionalities, such as manipulation of the combined spin-valley quantum degree of freedom, tunable strong in-plane and vertical electron coupling, and coherence transduction of quantum information between electronic and optical states. By studying electrostatically-controlled quantum tunneling processes, this CAREER project also provides sensitive characterization of material metrics associated with small energy scales that are difficult to access with conventional transport and optical studies. The more complicated gate-defined nanostructures provide platforms to study novel spin-valley-locked Coulomb drag and spin-valley polarized mesoscopic quantum physics, which provides a basis for novel quantum device concepts such as valleytronics and spin-valley qubits. Gate-defined quantum confinement and manipulation of optical excitations allow the study of novel exciton and condensate physics with tunable confinement-enhanced large exciton binding energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当固体的电子特性降低到原子极限时,其厚度会发生巨大变化。一个具有单原子厚度,过渡金属二分法元素(TMD)的半导体家族,托管独特的电子和光学特性,可以潜在地为未来电子和计算平台中许多剩余挑战提供解决方案。这个职业项目通过多功能实验控制调查了这些新颖的物质特性,以了解和利用它们,以通过改进的性能和操作方案来实现新颖的设备概念。这项研究为电子设备应用提供了可能在低能电子和灵敏度中特别相关的电子设备应用。如果成功的话,该项目还为未来的基于半导体的计算平台奠定了基础,该平台承诺(1)较小的设备维度和更高级别的集成,(2)具有较高计算能力和效率的新计算范式,以及(3)具有增强信息安全性的新通信协议。在跨学科研究环境中,通过该项目对多名研究生和本科生进行了教育。正在实施一系列的教育和宣传工作,旨在增强对下一代科学和工程工作的培训,包括(1)开发针对跨学科学生受众的新课程的新课程,(2)增强了良好的“实验物理学方法”的方法,从人数不足的团体与明尼苏达州科学博物馆有关K-12教育和宣传的跨学科研究以及合作伙伴关系,从而提高了公众对高级纳米技术和固态物理学的认识。电子旋转 - 一种量化的角动量形式,被广泛用于定义单个量子位的0和1状态。在过渡金属二分法(TMDS)中,电子自旋有效地锁定到另一个量子的自由度,山谷。这提供了定义和操纵自旋谷量子位具有潜在增强寿命和鲁棒性的新方法,因为意外将山谷量子量子自由程度与电气和磁性波动相反,这要困难得多。此外,与传统的半导体相比,TMD中的平面内静电相互作用要强得多,从而可以受控的光肌相互作用。这可以用来将电子量子信息转换为光子状态,这对于未来电子量子计算机之间的长距离量子通信至关重要。 This CAREER research focuses on studying exotic quantum phenomena in gate-defined TMD nanostructures via electrical and optical Quantum measurements and providing proof-of-principle demonstration of new quantum device functionalities, such as manipulation of the combined spin-valley quantum degree of freedom, tunable strong in-plane and vertical electronic coupling, and coherence translation of quantum information between electronic and optical states.通过研究静电控制的量子隧道工艺,该职业项目还提供了与小型能量尺度相关的材料指标的敏感表征,这些材料指标与常规运输和光学研究难以访问。更复杂的栅极定义的纳米结构提供了研究新型的旋转valley锁的库仑阻力和旋转 - 瓦利极化量子量子物理学的平台,该量子量子物理学为新颖的量子设备概念(例如valleytronics和spin-valley量)提供了基础。栅极定义的量子限制和对光兴奋的操纵允许研究具有可调式限制的大型令人兴奋的令人兴奋的令人兴奋的令人兴奋的新颖和冷凝物物理学的研究。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估而被认为是珍贵的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Wang其他文献

A robot navigation method based on human-robot interaction for 3D environment mapping
一种基于人机交互的3D环境测绘机器人导航方法
Inguinal incision as a successful route to extract the kidney during laparoscopic retroperitoneal live-donor nephrectomy.
腹股沟切口是腹腔镜腹膜后活体供体肾切除术中提取肾脏的成功途径。
Retraction. The fibronectin EDA splicing variant induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K and Erk.
纤连蛋白 EDA 剪接变体通过整合素 α9β1 介导的 PI3-K 和 Erk 激活诱导肺癌细胞上皮-间质转化。
High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.
具有广播功能的基于高速自由空间的可重构卡对卡光学互连。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ke Wang;A. Nirmalathas;C. Lim;E. Skafidas;K. Alameh
  • 通讯作者:
    K. Alameh
Study on time-resolution measurement of gas components under strong impact vibration
强冲击振动下气体成分时间分辨率测量研究
  • DOI:
    10.1117/12.2639977
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Zhenjie Wu;Zhenrong Zhang;Jingfeng Ye;Jun Shao;Mengmeng Tao;Sheng Wang;Guohua Li;Ke Wang;Haolong Wu
  • 通讯作者:
    Haolong Wu

Ke Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Wang', 18)}}的其他基金

CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications
CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信
  • 批准号:
    2245950
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321225
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant

相似国自然基金

异向介质中量子等离激元的调控及其应用于芯片级单光子源的机理研究
  • 批准号:
    62275231
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于超分子主体作传能介质的量子点体系的构建及其在TTA上转换中的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光子横向自旋与相干原子介质的相互作用及其在手性量子光学中的应用
  • 批准号:
    12104332
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维无序介质中光子输运及其量子调控的理论研究
  • 批准号:
    12104423
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
三维无序介质中光子输运及其量子调控的理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical study on control and observation of quantum states by many-body effects using mesoscopic complexes
利用介观配合物进行多体效应控制和观察量子态的理论研究
  • 批准号:
    21K03415
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2020
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear nonequilibrium transport in mesoscopic systems
介观系统中的非线性非平衡输运
  • 批准号:
    19H00656
  • 财政年份:
    2019
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2019
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了