CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
基本信息
- 批准号:1948133
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project advances the nation's development in science and engineering by providing new theory and algorithms for knowledge discovery from high-dimensional data. High-dimensional estimation, a computational procedure that extracts the most useful information from a large pool of redundant or irrelevant features, has played fundamental roles in various areas such as medical imaging, biology, and climatology. However, the well-established estimation schemes degrade dramatically when the data have complex structures, or when they are contaminated due to hardware failures, programming errors, or cyber-attacks. The goal of this project is to significantly broaden the understanding of the fundamental limits of learning algorithms against different types of structures and data errors, to offer a complete guideline for robust algorithmic design, and to highlight the extent to which an intelligent system behaves reliably and consistently. Outputs, such as theoretical results, algorithm implementation, and reusable empirical data, are designed to support a wide range of researchers in machine learning, high-dimensional statistics, signal processing, biology, and other related fields.The project will be carried out by investigating the interplay of high-dimensional statistics, optimization, and learning theory. The investigator will develop a unified framework for nonlinear estimation in the high-dimensional regime, which uncovers parameter estimation from quantized measurements and learning with nonlinear activation functions in deep neural networks. In particular, to account for the nonlinear and possibly nonconvex nature, the investigator will develop efficient constrained optimization algorithms by leveraging inherent geometric structures into algorithmic design and theoretical analysis. Based on the unified framework and the established generic results, the investigator will revisit an ensemble of heuristic algorithms and will provide a theoretical justification on when and why they succeed in practice. Lastly, the investigator will design algorithms that are robust to various types of data corruption, such as adversarial noise, outlier, and malicious noise. To obtain a near-optimal dependence on the noise rate and data dimension in the sample complexity, a series of new statistical results will be established by leveraging tools from, and enriching theory in learning theory and robust statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过为从高维数据中发现知识提供新的理论和算法,推动国家科学和工程的发展。高维估计是一种从大量冗余或不相关特征中提取最有用信息的计算过程,在医学成像、生物学和气候学等各个领域发挥着基础作用。然而,当数据具有复杂结构,或者由于硬件故障、编程错误或网络攻击而受到污染时,完善的估计方案就会急剧退化。该项目的目标是显着拓宽对学习算法针对不同类型的结构和数据错误的基本限制的理解,为稳健的算法设计提供完整的指南,并强调智能系统可靠和可靠运行的程度。始终如一。理论结果、算法实现和可重复使用的经验数据等输出旨在为机器学习、高维统计、信号处理、生物学和其他相关领域的广泛研究人员提供支持。该项目将由研究高维统计、优化和学习理论的相互作用。研究人员将开发一个统一的高维非线性估计框架,该框架揭示了来自量化测量的参数估计以及深度神经网络中非线性激活函数的学习。特别是,为了考虑非线性和可能的非凸性质,研究人员将通过在算法设计和理论分析中利用固有的几何结构来开发有效的约束优化算法。基于统一框架和已建立的通用结果,研究人员将重新审视启发式算法的集合,并就它们何时以及为何在实践中取得成功提供理论依据。最后,研究人员将设计对各种类型的数据损坏具有鲁棒性的算法,例如对抗性噪声、异常值和恶意噪声。为了在样本复杂性中获得对噪声率和数据维度的近乎最佳依赖,将通过利用学习理论和稳健统计中的工具并丰富理论来建立一系列新的统计结果。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient active learning of sparse halfspaces with arbitrary bounded noise
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
- 通讯作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
Semi-Verified PAC Learning from the Crowd
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Efficient PAC Learning from the Crowd with Pairwise Comparisons
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Residual-Based Sampling for Online Outlier-Robust PCA
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tianhao Zhu;Jie Shen
- 通讯作者:Tianhao Zhu;Jie Shen
Fast spectral analysis for approximate nearest neighbor search
- DOI:10.1007/s10994-021-06124-1
- 发表时间:2022-01
- 期刊:
- 影响因子:7.5
- 作者:Jing Wang;Jie Shen
- 通讯作者:Jing Wang;Jie Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shen其他文献
Orchestrating parallel detection of strongly connected components on GPUs
在 GPU 上协调强连接组件的并行检测
- DOI:
10.1016/j.parco.2017.11.001 - 发表时间:
2017-11 - 期刊:
- 影响因子:1.4
- 作者:
Xuhao Chen;Cheng Chen;Jie Shen;Jianbin Fang;Tao Tang;Canqun Yang;Zhiying Wang - 通讯作者:
Zhiying Wang
Universities as financing vehicles of (sub)urbanisation: the development of university towns in Shanghai
大学作为(郊区)城市化的融资工具:上海大学城的发展
- DOI:
10.1016/j.landusepol.2020.104679 - 发表时间:
2020 - 期刊:
- 影响因子:7.1
- 作者:
Jie Shen - 通讯作者:
Jie Shen
JAK/STAT signaling regulates the Harmonia axyridis leg regeneration by coordinating cell proliferation
JAK/STAT信号通过协调细胞增殖来调节异色瓢虫腿部再生
- DOI:
10.1016/j.ydbio.2022.01.002 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Hang Zhou;Wei Wang;Shuo Yan;Junzheng Zhang;Dan Wang;Jie Shen - 通讯作者:
Jie Shen
Analytical investigation into the single shear performance of a joint with a new beech and self-tapping screw composite dowel
新型山毛榉自攻螺钉复合销钉接头单剪性能分析研究
- DOI:
10.15376/biores.17.2.2347-2357 - 发表时间:
2022-03 - 期刊:
- 影响因子:1.5
- 作者:
Liang Qian;Yingying Xue;Jie Shen;Yuewen Gao;Shengcai Li;Ying Gao;Lihong Yao;Yingchun Gong;Zhiqiang Wang;Qingfeng Ding;Xudong Zhu - 通讯作者:
Xudong Zhu
Mesenchymal stem cells overexpressing Ang1 attenuates phosgene-induced acute lung injury in rats
过度表达 Ang1 的间充质干细胞可减轻光气诱导的大鼠急性肺损伤
- DOI:
10.1080/08958378.2018.1521483 - 发表时间:
2018-07 - 期刊:
- 影响因子:2.1
- 作者:
Yiru Shao;Jie Shen;Fangqing Zhou;Daikun He. - 通讯作者:
Daikun He.
Jie Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shen', 18)}}的其他基金
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
- 批准号:
2012585 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
- 批准号:
1722535 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720440 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast spectral methods and their applications
快速光谱方法及其应用
- 批准号:
1620262 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
- 批准号:
1445355 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1419053 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0915066 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
- 批准号:
0721625 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
具有免疫佐剂活性的复杂三萜皂苷QS-21类化合物的高效合成研究
- 批准号:22377038
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
调控分子HOMO与LUMO轨道电子分离和增强双激发态贡献协同实现单-三线态能级次序反转的高效率高稳定性蓝光发射材料
- 批准号:62375218
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习的三分量宽频带地震动场高效模拟研究
- 批准号:52378503
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多模型-自动化微流控芯片技术的三代EGFR-TKI耐药后个体化药物高效筛选平台的构建及应用
- 批准号:82304435
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多重A-D-A型三维电子受体的高效稳定有机光伏器件研究
- 批准号:52303237
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Development of efficient vibration analysis and control method for automobile structures
汽车结构高效振动分析与控制方法开发
- 批准号:
22KJ2418 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant