CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
基本信息
- 批准号:1948133
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project advances the nation's development in science and engineering by providing new theory and algorithms for knowledge discovery from high-dimensional data. High-dimensional estimation, a computational procedure that extracts the most useful information from a large pool of redundant or irrelevant features, has played fundamental roles in various areas such as medical imaging, biology, and climatology. However, the well-established estimation schemes degrade dramatically when the data have complex structures, or when they are contaminated due to hardware failures, programming errors, or cyber-attacks. The goal of this project is to significantly broaden the understanding of the fundamental limits of learning algorithms against different types of structures and data errors, to offer a complete guideline for robust algorithmic design, and to highlight the extent to which an intelligent system behaves reliably and consistently. Outputs, such as theoretical results, algorithm implementation, and reusable empirical data, are designed to support a wide range of researchers in machine learning, high-dimensional statistics, signal processing, biology, and other related fields.The project will be carried out by investigating the interplay of high-dimensional statistics, optimization, and learning theory. The investigator will develop a unified framework for nonlinear estimation in the high-dimensional regime, which uncovers parameter estimation from quantized measurements and learning with nonlinear activation functions in deep neural networks. In particular, to account for the nonlinear and possibly nonconvex nature, the investigator will develop efficient constrained optimization algorithms by leveraging inherent geometric structures into algorithmic design and theoretical analysis. Based on the unified framework and the established generic results, the investigator will revisit an ensemble of heuristic algorithms and will provide a theoretical justification on when and why they succeed in practice. Lastly, the investigator will design algorithms that are robust to various types of data corruption, such as adversarial noise, outlier, and malicious noise. To obtain a near-optimal dependence on the noise rate and data dimension in the sample complexity, a series of new statistical results will be established by leveraging tools from, and enriching theory in learning theory and robust statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过从高维数据中提供知识发现的新理论和算法来推动国家在科学和工程方面的发展。高维估计是一种计算程序,从大量冗余或无关的功能中提取最有用的信息,在各个领域(例如医学成像,生物学和气候学)中扮演了基本角色。但是,当数据具有复杂的结构或由于硬件故障,编程错误或网络攻击而污染时,良好的估计方案显着降低了估计方案。该项目的目的是显着扩大对不同类型的结构和数据错误学习算法的基本局限性的理解,为鲁棒算法设计提供完整的指导,并强调智能系统可靠,一致地行事的程度。诸如理论结果,算法实施和可重复使用的经验数据之类的输出旨在支持机器学习,高维统计,信号处理,生物学和其他相关领域的广泛研究人员。该项目将通过研究高维统计,优化,优化和学习理论的互动来实现。研究者将在高维度中开发一个统一的框架,用于非线性估计,该框架从量化的测量值中发现了参数估计,并通过深层神经网络中的非线性激活功能进行了学习。特别是,为了说明非线性和可能的非概念性质,研究者将通过将固有的几何结构利用固有的几何结构进行算法设计和理论分析来开发有效的约束优化算法。基于统一的框架和既定的通用结果,研究人员将重新审视启发式算法的合奏,并将提供理论上的理由,以实践何时以及为什么成功。最后,研究者将设计对各种类型的数据损坏(例如对抗噪声,异常值和恶意噪声)的算法。为了获得样本复杂性中对噪声速率和数据维度的近乎最佳依赖,通过利用工具的工具并丰富了学习理论和强大统计的理论,将建立一系列新的统计结果。这项奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛影响来评估,这是NSF的法定任务。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient active learning of sparse halfspaces with arbitrary bounded noise
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
- 通讯作者:Chicheng Zhang;Jie Shen;Pranjal Awasthi
Semi-Verified PAC Learning from the Crowd
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Residual-Based Sampling for Online Outlier-Robust PCA
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tianhao Zhu;Jie Shen
- 通讯作者:Tianhao Zhu;Jie Shen
Efficient PAC Learning from the Crowd with Pairwise Comparisons
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Shiwei Zeng;Jie Shen
- 通讯作者:Shiwei Zeng;Jie Shen
Fast spectral analysis for approximate nearest neighbor search
- DOI:10.1007/s10994-021-06124-1
- 发表时间:2022-01
- 期刊:
- 影响因子:7.5
- 作者:Jing Wang;Jie Shen
- 通讯作者:Jing Wang;Jie Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shen其他文献
Dynamics of regularized cavity flow at high Reynolds numbers
高雷诺数下规则化腔流动力学
- DOI:
10.1016/0893-9659(89)90093-1 - 发表时间:
1989 - 期刊:
- 影响因子:3.7
- 作者:
Jie Shen - 通讯作者:
Jie Shen
Clinical Observation of High Intensity Focused Ultrasound (HIFU) Ablation Combined with Qingyihuaji Formula for Salvage Treatment for Advanced Pancreatic Cancer Patients Failed to Systemic Chemotherapy
高强度聚焦超声(HIFU)消融联合清胰化积方抢救治疗全身化疗失败的晚期胰腺癌临床观察
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sheng;Jie Shen;N. Hu;Yunyun Cai;Xianjun Sun;Luming Liu - 通讯作者:
Luming Liu
The distribution of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on high-resolution genotyping of 167 families from Jiangsu Province, China.
基于中国江苏省167个家系的高分辨率基因分型的人类白细胞抗原-A、-B和-DRB1等位基因和单倍型的分布。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Q. Pan;S. Fan;Xiaoyan Wang;M. Pan;Xing Zhao;Xiao;Cheng;Jie Shen - 通讯作者:
Jie Shen
Phytoestrogen derivatives differentially inhibit arterial neointimal proliferation in a mouse model.
植物雌激素衍生物在小鼠模型中差异性地抑制动脉新内膜增殖。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:5
- 作者:
Jie Shen;Melanie Y. White;A. Husband;B. Hambly;S. Bao - 通讯作者:
S. Bao
arene / ATP host – guest recognition : selectivity , inhibition of ATP hydrolysis , and application in multidrug resistance treatment †
芳烃/ATP宿主-客体识别:选择性、ATP水解抑制以及在多药耐药性治疗中的应用†
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Guocan Yu;Jiong Zhou;Jie Shen;G. Tangb;Feihe Huang - 通讯作者:
Feihe Huang
Jie Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shen', 18)}}的其他基金
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
- 批准号:
2012585 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
- 批准号:
1722535 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720440 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast spectral methods and their applications
快速光谱方法及其应用
- 批准号:
1620262 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
- 批准号:
1445355 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1419053 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0915066 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
- 批准号:
0721625 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
功能化二硫化钼的可控构筑及其对Eu(III)和U(VI)的高效选择性去除研究
- 批准号:22106046
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
功能化二硫化钼的可控构筑及其对Eu(III)和U(VI)的高效选择性去除研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚10纳米Fe(III)氧化物复合材料的制备及其高效除砷特性研究
- 批准号:21707067
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于Fe(III)-羧络合物光解的重金属废水高效处理新技术原理
- 批准号:51578280
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
基于量子阱/量子点共振能量转移机制的高效率白光LED的研究
- 批准号:61575144
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant