Fast spectral methods and their applications
快速光谱方法及其应用
基本信息
- 批准号:1620262
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. Solutions for many problems of interest exhibit local singular behaviors which contaminate the accuracy of usual spectral/spectral-element methods. Many complex systems exhibiting anomalous diffusion can be better modeled with fractional partial differential equations, which are numerically challenging due to their nonlocal nature. Spectral/spectral-element methods usually lead to dense or block dense and ill-conditioned matrices that are difficult and expensive to solve. The focus of this project is to design, analyze, and implement fast and robust spectral methods for a class of numerically challenging problems. The numerical simulations will enable us to handle challenging problems having stringent accuracy and/or memory requirements with a reasonable cost in CPU and turn-around time, and will contribute to a better understanding of some fundamental issues in materials science and fluid dynamics through fast and accurate numerical simulations. Another important goal of this project is to engage graduate students in learning necessary skills of computational and applied mathematics so that they can pursue a successful career in sciences and engineering.The PI will address these issues with the following tasks: (i) develop effective Muntz Galerkin method to deal with problems with singular solutions; (ii) develop efficient and accurate spectral methods for solving a class of fractional differential equations by constructing special basis functions with generalized Jacobi and Laguerre functions, and derive corresponding error estimates; (iii) develop direct structured solvers with optimal computational complexity for dense or block dense linear systems arising from spectral/spectral-element discretization; and (iv) develop efficient spectral algorithms for solving the phase-field model of electro-magnetic couplings in ferroelectric and multiferroic nanostructures. The research will result in fast and stable direct spectral/spectral-element solvers for a class of partial differential equations as well as fast Jacobi/spherical harmonic transforms. This project will also result in a set of computational modules to efficiently and accurately solve the coupled nonlinear system for the phase-field model of electro-magnetic couplings in ferroelectric and multiferroic nanostructures.
光谱方法是用于应用数学和科学计算的一类技术,用于求解某些微分方程。有关许多感兴趣问题的解决方案表现出局部奇异行为,这些行为污染了通常的光谱/光谱元素方法的准确性。许多表现出异常扩散的复杂系统可以通过分数偏微分方程进行更好的建模,由于其非局部性质,它们在数值上具有挑战性。光谱/光谱元素方法通常会导致难以解决的量很难且昂贵。该项目的重点是设计,分析和实施一类数字具有挑战性的问题的快速且强大的光谱方法。数值模拟将使我们能够处理具有严格准确性和/或内存要求的具有挑战性的问题,并在CPU和周转时间合理成本,并通过快速,准确的数值模拟来更好地理解材料科学和流体动力学中的某些基本问题。该项目的另一个重要目标是吸引研究生学习计算和应用数学的必要技能,以便他们可以从事科学和工程领域的成功职业。PI将通过以下任务解决这些问题:(i)开发有效的Muntz Galerkin方法来处理具有单数解决方案的问题; (ii)开发有效而准确的光谱方法来通过使用广义的jacobi和laguerre函数构建特殊基础函数来求解一类分数微分方程,并得出相应的误差估计; (iii)开发具有最佳计算复杂性的直接结构化求解器,以用于光谱/光谱元素离散化引起的致密或块致密的线性系统; (iv)开发有效的光谱算法,用于求解铁电和多性纳米结构中电磁耦合的相位模型。这项研究将导致一类偏微分方程以及快速的雅各比/球形谐波变换的快速和稳定的直接光谱/光谱元素求解器。该项目还将导致一组计算模块有效,准确地求解在铁电和多种纳米结构中电磁耦合的相位模型的耦合非线性系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shen其他文献
Dynamics of regularized cavity flow at high Reynolds numbers
高雷诺数下规则化腔流动力学
- DOI:
10.1016/0893-9659(89)90093-1 - 发表时间:
1989 - 期刊:
- 影响因子:3.7
- 作者:
Jie Shen - 通讯作者:
Jie Shen
Clinical Observation of High Intensity Focused Ultrasound (HIFU) Ablation Combined with Qingyihuaji Formula for Salvage Treatment for Advanced Pancreatic Cancer Patients Failed to Systemic Chemotherapy
高强度聚焦超声(HIFU)消融联合清胰化积方抢救治疗全身化疗失败的晚期胰腺癌临床观察
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sheng;Jie Shen;N. Hu;Yunyun Cai;Xianjun Sun;Luming Liu - 通讯作者:
Luming Liu
The distribution of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on high-resolution genotyping of 167 families from Jiangsu Province, China.
基于中国江苏省167个家系的高分辨率基因分型的人类白细胞抗原-A、-B和-DRB1等位基因和单倍型的分布。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Q. Pan;S. Fan;Xiaoyan Wang;M. Pan;Xing Zhao;Xiao;Cheng;Jie Shen - 通讯作者:
Jie Shen
Phytoestrogen derivatives differentially inhibit arterial neointimal proliferation in a mouse model.
植物雌激素衍生物在小鼠模型中差异性地抑制动脉新内膜增殖。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:5
- 作者:
Jie Shen;Melanie Y. White;A. Husband;B. Hambly;S. Bao - 通讯作者:
S. Bao
arene / ATP host – guest recognition : selectivity , inhibition of ATP hydrolysis , and application in multidrug resistance treatment †
芳烃/ATP宿主-客体识别:选择性、ATP水解抑制以及在多药耐药性治疗中的应用†
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Guocan Yu;Jiong Zhou;Jie Shen;G. Tangb;Feihe Huang - 通讯作者:
Feihe Huang
Jie Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shen', 18)}}的其他基金
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
- 批准号:
1948133 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
- 批准号:
2012585 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
- 批准号:
1722535 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720440 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
- 批准号:
1445355 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1419053 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0915066 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
- 批准号:
0721625 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
水泥生料氧化物含量的近红外光谱在线分析方法研究
- 批准号:62303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温度调制的重金属废水多组分光谱长效在线检测方法
- 批准号:62303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于无人机和卫星雷达光谱遥感的玉米倒伏灾害智能监测评估方法研究
- 批准号:32371992
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向掺氢燃烧回火精准预测的多源光谱图像特征融合分析方法
- 批准号:62305087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨域无监督遥感图像光谱超分辨率重建方法研究
- 批准号:62372379
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A new class of fast and reliable spectral methods for partial differential equations
一类新型快速可靠的偏微分方程谱方法
- 批准号:
DE130100333 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0915066 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Fast Spectral Imaging Device For Tumor Margin Mapping
用于肿瘤边缘绘图的快速光谱成像装置
- 批准号:
8056051 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0610646 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant