Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
基本信息
- 批准号:0915066
- 负责人:
- 金额:$ 32.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As computer simulations are playing an ever increasing role in many branches of science and engineering and are rapidly replacing much of the expensive prototyping and testing phases in manufacturing and in science explorations, fast and robust numerical methods are becoming an indispensable tool for many scientists and engineers. The focus of this project is to design auurate, fast and robust spectral methods for solving a large class of partial differential equations, and apply them to investigate several important problems of current interest. The proposed research will result in fast and accurate numerical algorithms for a class of partial differential equations with applications in acoustic and electromagnetic scattering, complex fluids and materials science. In particular, the proposed numerical algorithms will make it possible to directly solve some important high-dimensional equations which are currently not treatable with existing numerical algorithms.It is expected that the proposed numerical simulations will enable us to handle challenging problems having stringent accuracy and/or memory requirements with a reasonable cost in CPU and turn-around time, contribute towards better understandings of the complex physical and mathematical problems, and provide valuable information for the design of advanced materials and on the rheological and hydrodynamic properties of complex fluids. Another important goal of this project is to engage graduate and undergraduate students in learning necessary skills of computational and applied mathematics so that they can pursue a successful career in sciences and engineering.
随着计算机模拟在科学和工程的许多分支中发挥着越来越多的作用,并且正在迅速取代制造业和科学探索中许多昂贵的原型制作和测试阶段,快速,鲁棒的数值方法正在成为许多科学家和工程师的必不可少工具。 该项目的重点是设计静脉,快速和健壮的光谱方法来解决大量的部分微分方程,并将其应用于研究当前感兴趣的几个重要问题。拟议的研究将导致一类偏微分方程的快速,准确的数值算法,并在声学和电磁散射中应用,复杂的流体和材料科学。 In particular, the proposed numerical algorithms will make it possible to directly solve some important high-dimensional equations which are currently not treatable with existing numerical algorithms.It is expected that the proposed numerical simulations will enable us to handle challenging problems having stringent accuracy and/or memory requirements with a reasonable cost in CPU and turn-around time, contribute towards better understandings of the complex physical and mathematical problems, and provide valuable information for the高级材料以及复杂流体的流变和流体动力特性的设计。 该项目的另一个重要目标是让研究生和本科生学习计算和应用数学的必要技能,以便他们可以从事科学和工程领域的成功职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shen其他文献
Dynamics of regularized cavity flow at high Reynolds numbers
高雷诺数下规则化腔流动力学
- DOI:
10.1016/0893-9659(89)90093-1 - 发表时间:
1989 - 期刊:
- 影响因子:3.7
- 作者:
Jie Shen - 通讯作者:
Jie Shen
Clinical Observation of High Intensity Focused Ultrasound (HIFU) Ablation Combined with Qingyihuaji Formula for Salvage Treatment for Advanced Pancreatic Cancer Patients Failed to Systemic Chemotherapy
高强度聚焦超声(HIFU)消融联合清胰化积方抢救治疗全身化疗失败的晚期胰腺癌临床观察
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sheng;Jie Shen;N. Hu;Yunyun Cai;Xianjun Sun;Luming Liu - 通讯作者:
Luming Liu
The distribution of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on high-resolution genotyping of 167 families from Jiangsu Province, China.
基于中国江苏省167个家系的高分辨率基因分型的人类白细胞抗原-A、-B和-DRB1等位基因和单倍型的分布。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Q. Pan;S. Fan;Xiaoyan Wang;M. Pan;Xing Zhao;Xiao;Cheng;Jie Shen - 通讯作者:
Jie Shen
Phytoestrogen derivatives differentially inhibit arterial neointimal proliferation in a mouse model.
植物雌激素衍生物在小鼠模型中差异性地抑制动脉新内膜增殖。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:5
- 作者:
Jie Shen;Melanie Y. White;A. Husband;B. Hambly;S. Bao - 通讯作者:
S. Bao
arene / ATP host – guest recognition : selectivity , inhibition of ATP hydrolysis , and application in multidrug resistance treatment †
芳烃/ATP宿主-客体识别:选择性、ATP水解抑制以及在多药耐药性治疗中的应用†
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Guocan Yu;Jiong Zhou;Jie Shen;G. Tangb;Feihe Huang - 通讯作者:
Feihe Huang
Jie Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shen', 18)}}的其他基金
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 32.91万 - 项目类别:
Continuing Grant
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
- 批准号:
1948133 - 财政年份:2020
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
- 批准号:
2012585 - 财政年份:2020
- 资助金额:
$ 32.91万 - 项目类别:
Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
- 批准号:
1722535 - 财政年份:2017
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
- 批准号:
1720440 - 财政年份:2017
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Fast spectral methods and their applications
快速光谱方法及其应用
- 批准号:
1620262 - 财政年份:2016
- 资助金额:
$ 32.91万 - 项目类别:
Continuing Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
- 批准号:
1445355 - 财政年份:2014
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
- 批准号:
1419053 - 财政年份:2014
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
- 批准号:
1217066 - 财政年份:2012
- 资助金额:
$ 32.91万 - 项目类别:
Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
- 批准号:
0721625 - 财政年份:2007
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
相似国自然基金
水泥生料氧化物含量的近红外光谱在线分析方法研究
- 批准号:62303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位拉曼光谱解析单原子催化剂的电化学析氧机制
- 批准号:22302184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温度调制的重金属废水多组分光谱长效在线检测方法
- 批准号:62303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
梯度介电常数近零复合材料的构筑与宽光谱发射率的电子声子协同调控
- 批准号:52371139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于无人机和卫星雷达光谱遥感的玉米倒伏灾害智能监测评估方法研究
- 批准号:32371992
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimal preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems
椭圆边值问题谱间断Galerkin方法的最优预处理器
- 批准号:
218348188 - 财政年份:2012
- 资助金额:
$ 32.91万 - 项目类别:
Research Grants
Superconvergence of p-version/spectral collocation, discontinuous Galerkin methods and eigenvalue approximation
p版本/谱搭配的超收敛、不连续伽辽金方法和特征值近似
- 批准号:
0612908 - 财政年份:2006
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
- 批准号:
0610646 - 财政年份:2006
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Fast Spectral-Galerkin Methods and Their Applicatons
快速谱伽辽金方法及其应用
- 批准号:
0311915 - 财政年份:2003
- 资助金额:
$ 32.91万 - 项目类别:
Standard Grant
Numerical Methods Based on Sinc Functions
基于Sinc函数的数值方法
- 批准号:
11450038 - 财政年份:1999
- 资助金额:
$ 32.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)