CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction

CRII:III:迈向有效和高效的城市规模交通重建

基本信息

  • 批准号:
    2412340
  • 负责人:
  • 金额:
    $ 17.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Automobiles have facilitated socio-economic development and connected nearly all social sectors. However, rapid urbanization and expansion of the traffic system have caused many issues worldwide including congestion and accidents. As urbanization and vehicle production are projected to further increase in coming decades, better planning and management of traffic become imperative. Traffic is a dynamical system that propagates from one area to another in a city. So, in order to optimize it for various purposes, a holistic and systematic viewpoint of city-scale traffic dynamics is inevitable and necessary. Nevertheless, studies of this topic are currently lacking due to the limitation of traffic data and the multi-scale interpretation of the traffic system. This proposal focuses on leveraging mobile data to effectively and efficiently reconstruct city-scale traffic. The reconstructed traffic can be used to not only plan and manage urban traffic but also to predict traffic patterns by leveraging advanced traffic simulation. This project is expected to innovate in transportation and traffic research, and thus benefit people from various disciplines, including computer science, civil engineering, urban planning, earth science, and supply chain management. The accompanying educational and outreach activities include curriculum development at the intersection of Computer Science and Intelligent Transporation Systems, and research opportunities for students in underrepresented groups as well as high school students. The overall goal of this project is developing effective and efficient reconstruction methods of city-scale traffic using mobile data. First of all, the travel time of individual road segments will be estimated using the time information embedded in mobile data. With the estimated travel time, other macroscopic traffic states such as speed, flow, and density will be subsequently estimated. Second, a novel map-matching technique for generating vehicle trajectories will be developed in case of low-sampling rate mobile data. Third, simulation-based optimization will be adopted to reconstruct microscopic traffic dynamics while ensuring consistent traffic flows at the boundaries of data-sufficient and data-lacking areas. Lastly, a hybrid simulation will be explored with the aim to achieve highly-efficient traffic reconstruction through studying various ITS applications' requirements on efficiency and reconstruction fidelity, and an effective conversion method between macroscopic and microscopic traffic simulation. The proposed methods will be evaluated using both publicly available and proprietary data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。自动行动已促进了社会经济发展,并几乎将所有社会部门联系起来。但是,交通系统的快速城市化和扩张引起了全球许多问题,包括拥塞和事故。随着城市化和车辆生产预计将在未来几十年内进一步增加,对流量的更好计划和管理变得必须进行。流量是一个动态系统,在一个城市中从一个区域传播到另一个区域。因此,为了为各种目的进行优化,城市规模的交通动态的整体和系统的观点是不可避免的和必要的。然而,由于流量数据的局限性以及对流量系统的多尺度解释,目前缺乏对该主题的研究。该提案的重点是利用移动数据有效地重建城市规模的流量。重建的流量不仅可以用来计划和管理城市流量,还可以通过利用高级流量模拟来预测流量模式。预计该项目将在运输和交通研究中进行创新,从而使来自各个学科的人们受益,包括计算机科学,土木工程,城市规划,地球科学和供应链管理。随附的教育和外展活动包括在计算机科学和智能转运系统的交汇处开发课程,以及为人数不足的群体以及高中生的研究机会。该项目的总体目标是使用移动数据开发有效,有效的城市级交通方法。首先,将使用移动数据中嵌入的时间信息估算单个道路段的旅行时间。随着估计的旅行时间,其他宏观交通状态(例如速度,流量和密度)将随后估算。其次,在低采样率移动数据的情况下,将开发一种用于生成车辆轨迹的新型地图匹配技术。第三,将采用基于仿真的优化来重建微观流量动态,同时确保在数据填充和数据占用的领域的边界保持一致的流量。最后,将探索混合模拟,目的是通过研究其对效率和重建忠诚度的各种应用要求,以及宏观和微观交通模拟之间的有效转换方法来实现高效的交通重建。提出的方法将使用公开可用和专有数据进行评估。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Weizi Li其他文献

Value co–creation between foreign firms and indigenous SMEs in Kazakhstan's oil and gas industry: the role of information technology spillovers
哈萨克斯坦石油和天然气行业外国公司与本土中小企业之间的价值共创:信息技术溢出效应的作用
Urban Socio-Technical Systems: An Autonomy and Mobility Perspective
  • DOI:
    10.48550/arxiv.2210.12181
    10.48550/arxiv.2210.12181
  • 发表时间:
    2022-10
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizi Li
    Weizi Li
  • 通讯作者:
    Weizi Li
    Weizi Li
Efficient Quality-Diversity Optimization through Diverse Quality Species
通过多样化的品质物种实现高效的品质多样性优化
Organisational Responsiveness Through Signs
通过标志进行组织响应
  • DOI:
    10.1007/978-3-319-42102-5_13
    10.1007/978-3-319-42102-5_13
  • 发表时间:
    2016
    2016
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Diego Fuentealba;Kecheng Liu;Weizi Li
    Diego Fuentealba;Kecheng Liu;Weizi Li
  • 通讯作者:
    Weizi Li
    Weizi Li
Simulation and Learning for Urban Mobility: City-scale Traffic Reconstruction and Autonomous Driving
  • DOI:
  • 发表时间:
    2019-08
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizi Li
    Weizi Li
  • 通讯作者:
    Weizi Li
    Weizi Li
共 12 条
  • 1
  • 2
  • 3
前往

Weizi Li的其他基金

Advancing machine learning to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis
推进机器学习以实现炎症性关节炎的真实早期检测和个性化疾病结果预测
  • 批准号:
    EP/Y019393/1
    EP/Y019393/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Research Grant
    Research Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2153426
    2153426
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant
Future blood testing for inclusive monitoring and personalised analytics Network+
未来血液检测的包容性监测和个性化分析网络
  • 批准号:
    EP/W000652/1
    EP/W000652/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
  • 批准号:
    52370204
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
  • 批准号:
    82370622
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
  • 批准号:
    42307492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
  • 批准号:
    42377264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
  • 批准号:
    2245907
    2245907
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
  • 批准号:
    2246067
    2246067
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2406647
    2406647
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2153426
    2153426
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2153326
    2153326
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
    $ 17.48万
  • 项目类别:
    Standard Grant
    Standard Grant