CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
基本信息
- 批准号:2245907
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the era of big data, it is increasingly challenging for domain experts, such as physicians and pharmaceutical scientists, to efficiently retrieve relevant information from different databases to support their decision-making. Knowledge screening, including searching and filtering, based on traditional relational databases may suffer from several problems. For example, keyword-based searching and rule-based filtering can only handle limited types of questions and lack flexibility. Over the past few years, modern deep learning methods have alleviated this problem by automatically translating natural language questions into structured query languages. However, if different types of data such as tabular, textual, and heterogeneous graph data are consolidated into a relational database with many tables, structured queries can become very complex, which poses new challenges to deep learning models. This project will tackle these challenges by designing a new paradigm based on non-relational databases that store data in a more flexible non-tabular form. The new paradigm can easily incorporate reasoning into question-to-query translation, enabling deep learning models to handle more complex questions, which will benefit many domain-specific applications. The project will also promote teaching and mentoring activities, such as developing new courses and training of next generation experts in machine learning, natural language processing, data management, and health informatics. The project outcomes and observations will be open for public use.The project will forge a new research direction for natural language-driven knowledge screening on non-relational databases. Although there are many well-known, efficient, and scalable non-relational databases and search engines, little effort has been devoted to developing natural language querying methods for them and exploiting their potential. This project aims to fill this gap by designing new underlying frameworks for natural language-based searching and querying, including data consolidation in non-relational databases, reasoning integration in both databases and query templates, and human-in-the-loop model development and evaluations. Two primary research activities will be undertaken based on a popular search engine known as ElasticSearch: (1) The investigator will develop new deep learning models for translating natural language questions into ElasticSearch queries and create new datasets for training and evaluating the models. (2) The investigator will propose a unified approach, standard format, and extensible way to create knowledge “nuggets” to store multi-modal data and develop new question-generation models to automatically generate questions from nested knowledge. The project will produce a variety of outcomes, such as data used for model development, algorithms for model training and inference, and annotation tools used for creating training data. These products will benefit data management and screening, and support decision-making in healthcare, bioinformatics, and scientific research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,对于像医师和制药科学家等领域专家,有效地从不同数据库中检索相关信息以支持其决策,这是越来越大的挑战。基于传统关系数据库的知识筛选,包括搜索和过滤,可能会遇到几个问题。例如,基于关键字的搜索和基于规则的过滤只能处理有限类型的问题,并且缺乏灵活性。在过去的几年中,现代深度学习方法通过将自然语言问题自动转化为结构化查询语言来缓解了这个问题。但是,如果将不同类型的数据(例如表格,文本和异质图数据)整合到具有许多表的关系数据库中,则结构化查询可能会变得非常复杂,这为深度学习模型带来了新的挑战。该项目将通过基于非关系数据库设计新的范式来应对这些挑战,该数据库以更灵活的非tabular形式存储数据。新的范式可以轻松地将推理纳入问题之间的翻译中,从而使深度学习模型能够处理更复杂的问题,这将使许多特定领域的应用程序受益。该项目还将促进教学和心理活动,例如开发新课程以及对机器学习,自然语言处理,数据管理和健康信息的下一代专家的培训。该项目的结果和观察结果将开放供公众使用。该项目将在非关系数据库上为自然语言驱动的知识筛选提供一个新的研究方向。尽管有许多知名,高效且可扩展的非关系数据库和搜索引擎的许多知名,有效且可扩展的搜索引擎,很少努力为其开发自然语言Query Query Query Query Query Query Query Query Query Query Query Query Query Query Query and teen and Enctions的潜力。该项目旨在通过设计用于基于自然语言的搜索和查询的新的基础框架来填补这一空白,包括在非关系数据库中的数据整合,数据库和查询模板中的推理集成以及人类在循环模型开发和评估中。将根据流行的搜索引擎(称为Elasticsearch)进行两项主要的研究活动:(1)研究人员将开发新的深度学习模型,以将自然语言问题转化为Elasticsearch查询,并创建用于培训和评估模型的新数据集。 (2)研究者将提出一种统一的方法,标准格式和可扩展的方法来创建知识“掘金”来存储多模式数据并开发新的问题生成模型,以自动从嵌套知识中产生问题。该项目将产生各种结果,例如用于模型开发的数据,用于模型培训和推理的算法以及用于创建培训数据的注释工具。这些产品将受益于数据管理和筛查,并支持医疗保健,生物信息学和科学研究的决策。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Wang其他文献
50; DIFFERENTIAL ALTERATIONS IN CIRCULATING EPINEPHRINE (E), and NOREPINEPHRINE (NE) LEVELS AFTER TRAUMA‐HEMORRHAGE (Hem), and CRYSTALLOID RESUSCITATION (Rs)
50;创伤出血 (Hem) 和晶体复苏 (Rs) 后循环肾上腺素 (E) 和去甲肾上腺素 (NE) 水平的差异
- DOI:
10.1097/00024382-199401001-00051 - 发表时间:
1994 - 期刊:
- 影响因子:3.1
- 作者:
S. Tait;Ping Wang;Z. Ba;I. Chaudry - 通讯作者:
I. Chaudry
Quantum Demiric-Selcuk Meet-in-the-Middle Attacks on Reduced-Round AES
针对缩减轮次 AES 的量子 Demiric-Selcuk 中间相遇攻击
- DOI:
10.1007/s10773-022-05003-2 - 发表时间:
2022-01 - 期刊:
- 影响因子:1.4
- 作者:
Ping Wang;Xiaomei Chen;Guohao Jiang - 通讯作者:
Guohao Jiang
Multi-Objective Optimization for Drone Delivery
无人机交付的多目标优化
- DOI:
10.1109/vtcfall.2019.8891117 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Suttinee Sawadsitang;D. Niyato;Puay Siew Tan;Ping Wang;Sarana Nutanong - 通讯作者:
Sarana Nutanong
BRAF V600E as an accurate marker to complement fine needle aspiration (FNA) cytology in the guidance of thyroid surgery in the Chinese population: evidence from over 1000 consecutive FNAs with follow-up.
BRAF V600E 作为补充细针穿刺 (FNA) 细胞学的准确标记,指导中国人群甲状腺手术:来自 1000 多个连续 FNA 的随访证据。
- DOI:
10.1093/jjco/hyaa209 - 发表时间:
2020 - 期刊:
- 影响因子:2.4
- 作者:
Qun;Yong Wang;Q. Ye;Ping Wang;J. Rao - 通讯作者:
J. Rao
The Activity of AQP9 Is Mediated MAPK in Arsenic-Treated Mouse Model of Hepatocellular Carcinoma
AQP9 活性在砷处理的小鼠肝细胞癌模型中介导 MAPK
- DOI:
10.4236/abb.2022.1312037 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qianqian Wang;Ping Wang;Xiaozhen Wang;Xiaowen Wang;Zeyan Zhang;F. Lian;Rong Zhen;Yifei Cao - 通讯作者:
Yifei Cao
Ping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Wang', 18)}}的其他基金
Collaborative Research: Cultivating Tomorrow's Innovators Through Exploring Planetary Images with Artificial Intelligence
合作研究:通过人工智能探索行星图像培养明天的创新者
- 批准号:
2314155 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Excellence, Ethics, and Strategic Thinking
CyberCorps 服务奖学金:卓越、道德和战略思维
- 批准号:
2234554 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
RAPID: 2018 Hurricane Season: Sedimentological and Morphological Characteristics of Hurricane Michael Induced Storm Deposits in Apalachicola Bay
RAPID:2018 年飓风季节:迈克尔飓风引发的阿巴拉契科拉湾风暴沉积物的沉积学和形态特征
- 批准号:
1904055 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
BIGDATA: IA: Virtual Observatory of Innovation Communities and Ecosystems (VOICE): Advancing Big Data with Ecology Theory and Data Science
大数据:IA:创新社区和生态系统虚拟观测站(VOICE):利用生态理论和数据科学推进大数据
- 批准号:
1546404 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Investigation of the early growth response gene (Egr) 2 and 3 mediated regulatory programme in T cells
T 细胞中早期生长反应基因 (Egr) 2 和 3 介导的调控程序的研究
- 批准号:
MR/N00096X/1 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Collaborative Research: Bringing Problem Solving in the Field into the Classroom: Developing and Assessing Virtual Field Trips for Teaching Sedimentary and Introductory Geology
合作研究:将现场解决问题带入课堂:开发和评估沉积学和入门地质学教学的虚拟实地考察
- 批准号:
1044257 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
RAPID: Emergency Field Investigation of Oil-Beach Interaction along the Alabama and Florida Beaches Following the BP Deepwater Horizon Oil Spill
RAPID:英国石油公司深水地平线漏油事件后,对阿拉巴马州和佛罗里达州海滩沿线的油滩相互作用进行紧急现场调查
- 批准号:
1041868 - 财政年份:2010
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
TLS: Science & Technology Innovation Concept Knowledge-base (STICK): Monitoring, Understanding, and Advancing the (R)Evolution of Science & Technology Innovations
TLS:科学
- 批准号:
0915645 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
DHB: Scalable Computational Analysis of the Diffusion of Technological Concepts
DHB:技术概念扩散的可扩展计算分析
- 批准号:
0729459 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Study of Novel Interfacial Biocatalysis of Multienzyme Systems Self-Assembled at Organic-Aqueous Interfaces
职业:有机-水界面自组装多酶系统的新型界面生物催化研究
- 批准号:
0703999 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
- 批准号:52370204
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
- 批准号:
2246067 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2406647 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2153426 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2153326 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant