CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction

CRII:III:迈向有效和高效的城市规模交通重建

基本信息

  • 批准号:
    2153426
  • 负责人:
  • 金额:
    $ 17.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Automobiles have facilitated socio-economic development and connected nearly all social sectors. However, rapid urbanization and expansion of the traffic system have caused many issues worldwide including congestion and accidents. As urbanization and vehicle production are projected to further increase in coming decades, better planning and management of traffic become imperative. Traffic is a dynamical system that propagates from one area to another in a city. So, in order to optimize it for various purposes, a holistic and systematic viewpoint of city-scale traffic dynamics is inevitable and necessary. Nevertheless, studies of this topic are currently lacking due to the limitation of traffic data and the multi-scale interpretation of the traffic system. This proposal focuses on leveraging mobile data to effectively and efficiently reconstruct city-scale traffic. The reconstructed traffic can be used to not only plan and manage urban traffic but also to predict traffic patterns by leveraging advanced traffic simulation. This project is expected to innovate in transportation and traffic research, and thus benefit people from various disciplines, including computer science, civil engineering, urban planning, earth science, and supply chain management. The accompanying educational and outreach activities include curriculum development at the intersection of Computer Science and Intelligent Transporation Systems, and research opportunities for students in underrepresented groups as well as high school students. The overall goal of this project is developing effective and efficient reconstruction methods of city-scale traffic using mobile data. First of all, the travel time of individual road segments will be estimated using the time information embedded in mobile data. With the estimated travel time, other macroscopic traffic states such as speed, flow, and density will be subsequently estimated. Second, a novel map-matching technique for generating vehicle trajectories will be developed in case of low-sampling rate mobile data. Third, simulation-based optimization will be adopted to reconstruct microscopic traffic dynamics while ensuring consistent traffic flows at the boundaries of data-sufficient and data-lacking areas. Lastly, a hybrid simulation will be explored with the aim to achieve highly-efficient traffic reconstruction through studying various ITS applications' requirements on efficiency and reconstruction fidelity, and an effective conversion method between macroscopic and microscopic traffic simulation. The proposed methods will be evaluated using both publicly available and proprietary data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。汽车促进了社会经济发展,并连接了几乎所有社会部门。然而,快速的城市化和交通系统的扩张在世界范围内造成了许多问题,包括拥堵和事故。随着城市化和车辆产量预计在未来几十年进一步增长,更好的交通规划和管理势在必行。交通是一个动态系统,从城市的一个区域传播到另一个区域。因此,为了针对各种目的对其进行优化,对城市规模的交通动态进行整体和系统的观察是不可避免和必要的。然而,由于交通数据的限制和交通系统的多尺度解释,目前该主题的研究还很缺乏。该提案的重点是利用移动数据有效且高效地重建城市规模的交通。重建的交通不仅可以用于规划和管理城市交通,还可以利用先进的交通模拟来预测交通模式。该项目预计将在交通和交通研究方面进行创新,从而使计算机科学、土木工程、城市规划、地球科学和供应链管理等各个学科的人们受益。随之而来的教育和推广活动包括计算机科学和智能交通系统交叉领域的课程开发,以及为代表性不足群体的学生和高中生提供研究机会。该项目的总体目标是开发利用移动数据有效且高效的城市规模交通重建方法。首先,将使用移动数据中嵌入的时间信息来估计各个路段的旅行时间。通过估计的出行时间,随后将估计其他宏观交通状态,例如速度、流量和密度。其次,将开发一种用于在低采样率移动数据的情况下生成车辆轨迹的新型地图匹配技术。第三,采用基于模拟的优化来重建微观交通动态,同时确保数据充足和数据缺乏区域边界的交通流量一致。最后,通过研究各种ITS应用对效率和重建保真度的要求,以及宏观和微观交通模拟之间的有效转换方法,探索混合模拟,以实现高效的交通重建。拟议的方法将使用公开数据和专有数据进行评估。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weizi Li其他文献

Value co–creation between foreign firms and indigenous SMEs in Kazakhstan's oil and gas industry: the role of information technology spillovers
哈萨克斯坦石油和天然气行业外国公司与本土中小企业之间的价值共创:信息技术溢出效应的作用
Urban Socio-Technical Systems: An Autonomy and Mobility Perspective
  • DOI:
    10.48550/arxiv.2210.12181
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizi Li
  • 通讯作者:
    Weizi Li
Simulation and Learning for Urban Mobility: City-scale Traffic Reconstruction and Autonomous Driving
  • DOI:
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizi Li
  • 通讯作者:
    Weizi Li
Efficient Quality-Diversity Optimization through Diverse Quality Species
通过多样化的品质物种实现高效的品质多样性优化
Organisational Responsiveness Through Signs
通过标志进行组织响应
  • DOI:
    10.1007/978-3-319-42102-5_13
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Diego Fuentealba;Kecheng Liu;Weizi Li
  • 通讯作者:
    Weizi Li

Weizi Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weizi Li', 18)}}的其他基金

CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2412340
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Advancing machine learning to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis
推进机器学习以实现炎症性关节炎的真实早期检测和个性化疾病结果预测
  • 批准号:
    EP/Y019393/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Research Grant
Future blood testing for inclusive monitoring and personalised analytics Network+
未来血液检测的包容性监测和个性化分析网络
  • 批准号:
    EP/W000652/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Research Grant

相似国自然基金

两自由度磁通切换电机轴-周向三维气隙磁场调制行为研究
  • 批准号:
    52307070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
含斜向纱变厚度复合材料预制体三维织造多参数耦合成形机制研究
  • 批准号:
    52305376
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维弹性壳体斜向入水的自由面演变及载荷特性研究
  • 批准号:
    12302314
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真三向加卸荷下含硬性结构面深部硬岩失稳致灾机制研究
  • 批准号:
    52309137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自由基促进的惰性三级碳手性中心差向异构化反应研究
  • 批准号:
    22371128
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
  • 批准号:
    2245907
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2412340
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
  • 批准号:
    2246067
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2406647
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2153326
  • 财政年份:
    2022
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了