CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
基本信息
- 批准号:2246067
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As awareness of the need for privacy preservation continues to grow in society, new legal restrictions, such as the General Data Protection Regulation (GDPR), are emerging. Such laws demand that businesses and organizations not share their clients' raw data for any commercial purposes. Federated Learning (FL) is a distributed machine learning paradigm that works with decentralized data while preserving privacy. FL has gained widespread interest and has been applied in numerous applications, such as healthcare, education, and intelligent manufacturing. However, FL faces some challenges that come from, executing on diverse types of data and devices, such as mobile phones and Internet of Things (IoT) devices. This project aims to address the aforementioned issues in heterogeneous FL by developing mathematical models and efficient algorithms. In addition, the project will integrate trustworthy ML research into new curriculum development and support students from underrepresented groups.Heterogeneous FL faces two significant challenges: (1) each client in FL may generate data according to a distinct distribution; (2) heterogeneous clients, such as mobile phones and IoT devices, are equipped with a wide range of computation and communication capabilities. To address these challenges, this project will dramatically push the boundary of knowledge via the following two integrated research thrusts: (i) The research team aims to tackle data heterogeneity in FL by designing two advanced personalized learning methods. Specifically, the proposed solutions aim to balance the generalization ability from the global model and the personalization ability from the local model, improving both the global model and personalized local models. (ii) The team will study heterogeneous neural network aggregation for FL by providing advanced memory-efficient local training strategies for small devices. In addition, the project will make use of mutual knowledge distillation to improve the generalization ability of the local models. Finally, the team proposes a unified FL framework that integrates data-free knowledge aggregation with advanced memory-efficient solutions to tackle both heterogeneity issues simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着对隐私保护需求的认识在社会中不断增长,新的法律限制(例如一般数据保护法规(GDPR))正在出现。这样的法律要求企业和组织不会出于任何商业目的共享客户的原始数据。联合学习(FL)是一个分布式的机器学习范式,可在保留隐私的同时与分散数据一起使用。佛罗里达州已获得广泛的兴趣,并已应用于许多应用程序,例如医疗保健,教育和智能制造业。但是,FL面临着一些挑战,即在各种类型的数据和设备(例如手机和物联网(IoT)设备)上执行。该项目旨在通过开发数学模型和有效算法来解决异质FL中上述问题。此外,该项目将将值得信赖的ML研究集成到新的课程开发中,并支持来自代表性不足的组的学生。H -HEDENECEELOUS FL面临两个重大挑战:(1)FL中的每个客户可能会根据独特的分布来生成数据; (2)异构客户,例如手机和物联网设备,配备了广泛的计算和通信功能。为了应对这些挑战,该项目将通过以下两个集成的研究推力大大推动知识的边界:(i)研究小组旨在通过设计两种先进的个性化学习方法来解决FL中的数据异质性。具体而言,拟议的解决方案旨在平衡全球模型的概括能力以及本地模型的个性化能力,从而改善了全球模型和个性化的本地模型。 (ii)团队将通过为小型设备提供高级记忆有效的本地培训策略来研究FL的异质神经网络聚合。此外,该项目将利用相互知识蒸馏来提高本地模型的概括能力。最后,该团队提出了一个统一的FL框架,将无数据知识汇总与高级记忆有效的解决方案集成在一起,以同时解决这两个异质性问题。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lichao Sun其他文献
423 Study on mechanical behavior of steel fiber reinforced used fibrous materials
423 钢纤维增强废旧纤维材料力学性能研究
- DOI:
10.1299/jsmekansai.2011.86._4-23_ - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lichao Sun;Y. Fujita;T. Kurashiki;M. Zako - 通讯作者:
M. Zako
Anaesthetic literature
麻醉文献
- DOI:
10.1111/j.1365-2044.1988.tb06742.x - 发表时间:
1988 - 期刊:
- 影响因子:10.7
- 作者:
Jiqing Qiu;Yu Cui;Lichao Sun;Zhanpeng Zhu - 通讯作者:
Zhanpeng Zhu
1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?
1 1>2:大型语言模型能否充当跨语言知识聚合器?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yue Huang;Chenrui Fan;Yuan Li;Siyuan Wu;Tianyi Zhou;Xiangliang Zhang;Lichao Sun - 通讯作者:
Lichao Sun
Investigating and Defending Shortcut Learning in Personalized Diffusion Models
个性化扩散模型中捷径学习的调查和辩护
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yixin Liu;Ruoxi Chen;Lichao Sun - 通讯作者:
Lichao Sun
[Interdisciplinary teaching-assisted education reform in "Principal Biology"].
《原理生物学》跨学科教学辅助教育改革[J].
- DOI:
10.13345/j.cjb.230205 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lichao Sun;Xiaoyan Ma;Zhenya Chen;Qin Zou;Yixin Huo - 通讯作者:
Yixin Huo
Lichao Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
- 批准号:52370204
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
- 批准号:
2245907 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2406647 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2153426 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2153326 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant