CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
基本信息
- 批准号:2246067
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As awareness of the need for privacy preservation continues to grow in society, new legal restrictions, such as the General Data Protection Regulation (GDPR), are emerging. Such laws demand that businesses and organizations not share their clients' raw data for any commercial purposes. Federated Learning (FL) is a distributed machine learning paradigm that works with decentralized data while preserving privacy. FL has gained widespread interest and has been applied in numerous applications, such as healthcare, education, and intelligent manufacturing. However, FL faces some challenges that come from, executing on diverse types of data and devices, such as mobile phones and Internet of Things (IoT) devices. This project aims to address the aforementioned issues in heterogeneous FL by developing mathematical models and efficient algorithms. In addition, the project will integrate trustworthy ML research into new curriculum development and support students from underrepresented groups.Heterogeneous FL faces two significant challenges: (1) each client in FL may generate data according to a distinct distribution; (2) heterogeneous clients, such as mobile phones and IoT devices, are equipped with a wide range of computation and communication capabilities. To address these challenges, this project will dramatically push the boundary of knowledge via the following two integrated research thrusts: (i) The research team aims to tackle data heterogeneity in FL by designing two advanced personalized learning methods. Specifically, the proposed solutions aim to balance the generalization ability from the global model and the personalization ability from the local model, improving both the global model and personalized local models. (ii) The team will study heterogeneous neural network aggregation for FL by providing advanced memory-efficient local training strategies for small devices. In addition, the project will make use of mutual knowledge distillation to improve the generalization ability of the local models. Finally, the team proposes a unified FL framework that integrates data-free knowledge aggregation with advanced memory-efficient solutions to tackle both heterogeneity issues simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着社会对隐私保护必要性的认识不断增强,新的法律限制不断涌现,例如《通用数据保护条例》(GDPR)。此类法律要求企业和组织不得出于任何商业目的共享客户的原始数据。联合学习 (FL) 是一种分布式机器学习范例,可在保护隐私的同时处理分散数据。 FL 引起了广泛的兴趣,并已应用于医疗、教育、智能制造等众多领域。然而,FL 面临着一些挑战,这些挑战来自于在不同类型的数据和设备上执行,例如移动电话和物联网 (IoT) 设备。该项目旨在通过开发数学模型和高效算法来解决异构 FL 中的上述问题。此外,该项目还将把值得信赖的机器学习研究融入到新课程开发中,并为来自代表性不足群体的学生提供支持。异构 FL 面临两个重大挑战:(1)每个 FL 客户可能会根据不同的分布生成数据; (2)异构客户端,例如手机和物联网设备,配备了广泛的计算和通信能力。为了应对这些挑战,该项目将通过以下两个综合研究重点极大地拓展知识的边界:(i)研究团队旨在通过设计两种先进的个性化学习方法来解决 FL 中的数据异构性。具体来说,所提出的解决方案旨在平衡全局模型的泛化能力和局部模型的个性化能力,同时改进全局模型和个性化局部模型。 (ii) 该团队将通过为小型设备提供先进的内存高效本地训练策略来研究 FL 的异构神经网络聚合。此外,该项目将利用相互知识蒸馏来提高局部模型的泛化能力。最后,该团队提出了一个统一的 FL 框架,将无数据的知识聚合与先进的内存高效解决方案相结合,以同时解决异构性问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lichao Sun其他文献
Bamboo particle reinforced polypropylene composites made from different fractions of bamboo culm: Fiber characterization and analysis of composite properties
由不同竹秆部分制成的竹颗粒增强聚丙烯复合材料:纤维表征和复合材料性能分析
- DOI:
10.1002/pc.25329 - 发表时间:
2019 - 期刊:
- 影响因子:5.2
- 作者:
Tan Wei;Xiaolong Hao;Rongxian Ou;Lichao Sun;Junjie Xu;Qingwen Wang;Rongxian Ou - 通讯作者:
Rongxian Ou
Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection
虚拟上下文:通过特殊令牌注入增强越狱攻击
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuqi Zhou;Lin Lu;Hanchi Sun;Pan Zhou;Lichao Sun - 通讯作者:
Lichao Sun
ViT-1.58b: Mobile Vision Transformers in the 1-bit Era
ViT-1.58b:1 位时代的移动视觉变压器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhengqing Yuan;Rong Zhou;Hongyi Wang;Lifang He;Yanfang Ye;Lichao Sun - 通讯作者:
Lichao Sun
UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models
UniGen:使用大型语言模型生成文本数据集的统一框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Siyuan Wu;Yue Huang;Chujie Gao;Dongping Chen;Qihui Zhang;Yao Wan;Tianyi Zhou;Xiangliang Zhang;Jianfeng Gao;Chaowei Xiao;Lichao Sun - 通讯作者:
Lichao Sun
423 Study on mechanical behavior of steel fiber reinforced used fibrous materials
423 钢纤维增强废旧纤维材料力学性能研究
- DOI:
10.1299/jsmekansai.2011.86._4-23_ - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lichao Sun;Y. Fujita;T. Kurashiki;M. Zako - 通讯作者:
M. Zako
Lichao Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效靶向性III型胶原α1链蛋白细胞识别调控机制
- 批准号:22378330
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
游离脂肪酸激活PPARG上调III型干扰素通路抑制食管鳞癌的作用机制研究
- 批准号:82372708
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于铱(III)光敏剂的双光子光动力治疗瘢痕疙瘩研究
- 批准号:82304059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
- 批准号:
2245907 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2406647 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2153426 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2153326 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant