Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
基本信息
- 批准号:2311598
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many advanced edge computing applications rely on large-scale data analysis for high-level decision making. Edge computing makes computing faster and more efficient because it takes place near the physical location of either the user or the data rather than sending all the information to the cloud. For example, augmented reality/virtual reality (AR/VR) applications utilize data from high-definition sensors (e.g., cameras, motion sensors, and microphones) to enable accurate and robust human-computer interactions. Drones and electric vehicles perform tracking, adjustments and obstacle recognition and avoidance via analyzing data at the level of the vehicle. However, the current ability to understand and manage various high-dimensional sensing data is obscured by significant knowledge and data gaps due to the heterogeneous edge device and environments, hindering the building of precise models for emerging edge computing applications using data analytics. One important trend in edge computing is utilizing artificial intelligence (AI) to extract complex knowledge from various sensor measurements for precise modeling. However, most edge devices have limited computing and memory resources, making it challenging to perform sophisticated data analytics using AI while satisfying the time requirements of most applications. Therefore, a heuristic data analytic framework is needed to enable efficient and robust edge event prediction using multi-model learning on resource-constrained edge devices. The goal of this project is developing transformative machine learning and data analytics technologies for enabling AI-based applications on resource-constrained edge computing devices (e.g., IoT devices, AR/VR headsets, and drones). The outcome of this project will advance data analytics and machine learning research of deriving and integrating various high-dimensional sensing data from diverse data sources and building robust predictive models for generic edge computing applications. This project addresses two major problems: 1) the gap between the data complexity and limited computing resources on edge devices and 2) the gap between the robust performance requirement and the multi-dimensional data and complex data modeling from heterogeneous edge devices and environments. The project develops an efficient and robust edge computing framework to provide correctness guarantees on heterogeneous edge computing hardware across different environments. In particular, deep neural network acceleration techniques are designed to enable fine-grained data analytics on resource-constrained commercial-off-the-shelf edge devices. Novel multivariate data analytic models are developed to characterize the unique features of the target event based on high-dimensional sensing data. Such models advance the usage of data science in generic edge sensing tasks that usually suffer from long training times, low prediction accuracy, and ineffective parameter selection. Additionally, the project addresses the challenges arising from the heterogeneity in devices and environments by developing environment-transferable features and models, which enable easy deployment of AI-enabled applications across devices and environments. The project seeks to integrate computer science research with graduate and undergraduate curricula and promote female engineering student involvement. The outcomes will be shared through conferences, journals, and website accessibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多先进的边缘计算应用程序依赖于大规模数据分析进行高级决策。边缘计算使计算更快,更有效,因为它发生在用户或数据的物理位置附近,而不是将所有信息发送到云。 例如,增强现实/虚拟现实(AR/VR)应用程序利用来自高清传感器(例如,摄像机,运动传感器和麦克风)的数据来启用准确且可靠的人类计算机相互作用。无人机和电动汽车通过分析车辆级别的数据进行跟踪,调整和障碍物识别和避免。但是,由于异质的边缘设备和环境,当前理解和管理各种高维度数据的能力被大量知识和数据差距所掩盖,从而阻碍了使用数据分析的精确模型构建用于新兴边缘计算应用程序的精确模型。边缘计算的一个重要趋势是利用人工智能(AI)从各种传感器测量中提取复杂的知识以进行精确建模。但是,大多数边缘设备的计算和内存资源有限,因此在满足大多数应用程序的时间要求的同时,使用AI进行复杂的数据分析而具有挑战性。因此,需要一个启发式数据分析框架,以使用对资源受限的边缘设备上的多模型学习来实现高效且健壮的边缘事件预测。该项目的目的是开发可变革性的机器学习和数据分析技术,以启用基于AI的应用程序应用程序,以实现资源受限的边缘计算设备(例如,IoT设备,AR/VR耳机和无人机)。该项目的结果将推进数据分析和机器学习研究,以从各种数据源中得出和整合各种高维感应数据,并为通用边缘计算应用程序构建强大的预测模型。该项目解决了两个主要问题:1)数据复杂性与边缘设备上有限的计算资源之间的差距以及2)可靠的性能要求与多维数据以及来自异质边缘设备和环境的复杂数据建模之间的差距。该项目开发了一个高效且强大的边缘计算框架,以在不同环境的异质边缘计算硬件上提供正确的保证。特别是,深度神经网络加速技术旨在启用有关资源约束的商业货架边缘设备的细粒度数据分析。开发了新型的多元数据分析模型,以根据高维感应数据来表征目标事件的独特特征。这样的模型可以推进数据科学在通用边缘传感任务中的使用,这些任务通常遭受较长的训练时间,低预测准确性和无效参数选择。此外,该项目通过开发可转移的功能和模型来解决设备和环境中异质性引起的挑战,这可以轻松在设备和环境之间轻松部署AI-a-Spapend应用程序。该项目旨在将计算机科学研究与研究生和本科课程相结合,并促进女性工程学生的参与。结果将通过会议,期刊和网站可访问性分享。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry Cheng其他文献
Report on the Workshop “New Technologies in Stem Cell Research,” Society for Pediatric Research, San Francisco, California, April 29, 2006
“干细胞研究新技术”研讨会报告,儿科研究学会,加利福尼亚州旧金山,2006 年 4 月 29 日
- DOI:
10.1634/stemcells.2006-0397 - 发表时间:
2007 - 期刊:
- 影响因子:5.2
- 作者:
Jerry Cheng;E. Horwitz;S. Karsten;Lorelei D Shoemaker;Harley I. Kornblumc;P. Malik;K. Sakamoto - 通讯作者:
K. Sakamoto
On Resiliency to Compromised Nodes : A Case for Location Based Security in Sensor Networks
关于受损节点的弹性:传感器网络中基于位置的安全案例
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hao Yang;F. Ye;Jerry Cheng;Haiyun Luo;Songwu Lu;Lixia Zhang - 通讯作者:
Lixia Zhang
In-hospital complications of vaginal versus laparoscopic-assisted benign hysterectomy among older women: a propensity score-matched cohort study
老年女性阴道与腹腔镜辅助良性子宫切除术的院内并发症:倾向评分匹配队列研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.7
- 作者:
Jerry Cheng;Hung;Sheng;Kung;N. Huang;Hsiao;Yiing - 通讯作者:
Yiing
In-hospital complications of bilateral salpingo-oophorectomy at benign hysterectomy: a population-based cohort study
良性子宫切除术中双侧输卵管卵巢切除术的院内并发症:基于人群的队列研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Jerry Cheng;Hung;K. Chu;Kung;N. Huang;Hsiao;Yiing - 通讯作者:
Yiing
Villoglandular Adenocarcinoma of the Uterine Cervix: An Analysis of 12 Clinical Cases
子宫颈绒毛腺癌12例临床分析
- DOI:
10.1016/j.ijge.2011.01.009 - 发表时间:
2011 - 期刊:
- 影响因子:0.3
- 作者:
Jerry Cheng;Jen;Yu;Chung;Tao;Yuh‐Cheng Yang;T. Su;T. Tsai;Kung - 通讯作者:
Kung
Jerry Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry Cheng', 18)}}的其他基金
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2120350 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028873 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1933017 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1954959 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1514224 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Towards Understanding Smartphone User Privacy: Implication, Derivation, and Protection
EAGER:协作研究:理解智能手机用户隐私:含义、推导和保护
- 批准号:
1449958 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
- 批准号:82373150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于国人脊柱矢状位序列新分型的腰椎-躯干三维运动研究
- 批准号:82302739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人机物三元融合环境下的人机合作关键问题研究
- 批准号:62376117
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant