SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures

SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器

基本信息

  • 批准号:
    1901165
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Deep learning architectures such as convolutional neural networks and recurrent neural networks have achieved unprecedented, sometimes super-human accuracy on many modern applications in artificial intelligence, such as image classification and speech recognition. Power dissipation is however a major concern in these energy-hungry machine-learning architectures, and decreasing it requires designs that provide a more energy-efficient combination of hardware and machine-learning algorithms. There is an increased emphasis to leverage parallelism and specialization to improve performance and energy efficiency. To dramatically reduce power consumption, silicon photonics has been proposed to improve performance-per-Watt compared to electrical implementation.This project leverages photonic technology and heterogeneous multicores for the design of deep-neural network accelerators that improve parallelism, concurrency, energy efficiency and scalability in various machine-learning applications. The first task of the project is concerned with the characterization and identification of photonic devices that can implement accelerator functionalities such as multiply-and-accumulate, summation, and other arithmetic operations. The characterized devices are then inserted into single-layer and multi-layer photonic topologies for implementing accelerator functionality. The second task of the project implements various types of deep-learning architectures on the proposed photonic neural network accelerator to maximize the gains offered by the photonic technology. The third task of the project builds an extensive simulation and modeling infrastructure that combines the photonic technology, network architectures, accelerator functionality, and machine-learning algorithms developed in the previous two steps, in order to validate the significant reduction in energy consumption enabled by the photonic neural-network accelerator.The proposed research bridges a very important gap between photonic technology, hardware architecture, and machine learning. As such, and due to its cross-cutting nature, it is expected to have far-reaching impacts on the design of next-generation multicore architectures. It will foster new research directions in several areas, spanning computer architecture, optical technology, machine learning algorithms and applications. The research will also play a major role in education by integrating discovery with teaching and training. All the research findings and simulation toolkits will be disseminated to the community via conference and journal publications, and a dedicated website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
卷积神经网络和循环神经网络等深度学习架构在人工智能的许多现代应用(例如图像分类和语音识别)中实现了前所未有的、有时甚至超人类的准确性。然而,功耗是这些高耗能机器学习架构中的一个主要问题,要降低功耗就需要提供更节能的硬件和机器学习算法组合的设计。人们越来越重视利用并行性和专业化来提高性能和能源效率。为了大幅降低功耗,与电气实现相比,硅光子学被提议提高每瓦性能。该项目利用光子技术和异构多核来设计深度神经网络加速器,以提高并行性、并发性、能源效率和可扩展性在各种机器学习应用中。该项目的第一个任务涉及光子器件的表征和识别,这些器件可以实现乘法累加、求和和其他算术运算等加速器功能。然后将表征的器件插入单层和多层光子拓扑中以实现加速器功能。该项目的第二个任务是在所提出的光子神经网络加速器上实现各种类型的深度学习架构,以最大限度地提高光子技术提供的收益。该项目的第三个任务是建立一个广泛的模拟和建模基础设施,结合前两个步骤中开发的光子技术、网络架构、加速器功能和机器学习算法,以验证通过该技术实现的能耗显着降低。光子神经网络加速器。所提出的研究弥合了光子技术、硬件架构和机器学习之间的一个非常重要的差距。因此,由于其交叉性质,预计将对下一代多核架构的设计产生深远的影响。它将在计算机架构、光学技术、机器学习算法和应用等多个领域培育新的研究方向。该研究还将发现与教学和培训相结合,在教育中发挥重要作用。所有研究成果和模拟工具包都将通过会议和期刊出版物以及专门网站向社区传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hardware-Level Thread Migration to Reduce On-Chip Data Movement Via Reinforcement Learning
通过强化学习进行硬件级线程迁移以减少片上数据移动
An Approximate Communication Framework for Network-on-Chips
片上网络的近似通信框架
Exploiting Wireless Technology for Energy-Efficient Accelerators With Multiple Dataflows and Precision
利用无线技术实现具有多个数据流和精度的节能加速器
SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-Based Accelerator With Photonic Interconnects for CNN Inference
SPRINT:高性能、节能且可扩展的基于 Chiplet 的加速器,具有用于 CNN 推理的光子互连
Ascend: A Scalable and Energy-Efficient Deep Neural Network Accelerator With Photonic Interconnects
Ascend:具有光子互连的可扩展且节能的深度神经网络加速器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Louri其他文献

Nanoscale Accelerators for Artificial Neural Networks
人工神经网络纳米级加速器
  • DOI:
    10.1109/mnano.2022.3208757
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi
  • 通讯作者:
    Fabrizio Lombardi

Ahmed Louri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Louri', 18)}}的其他基金

Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324644
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
  • 批准号:
    2131946
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
  • 批准号:
    1953980
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
  • 批准号:
    1812495
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
  • 批准号:
    1702980
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1547034
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
  • 批准号:
    1513923
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
  • 批准号:
    1547035
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了