SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
基本信息
- 批准号:1513923
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power dissipation has become a fundamental barrier to scaling computing performance across all platforms from handheld, embedded systems, to laptops, to servers to data centers. Technology scaling down to the sub-nanometer regime has aided the growth in transistors per chip that has made multi-core architectures a power-efficient approach to harnessing parallelism and improving performance. The computing capabilities of these multi-core architectures can be unleashed only if the underlying Network-on-Chip (NoC) connecting the cores can provide the required bandwidth within the power budget of the chip. However, the design of power-efficient, low-latency and high-bandwidth NoCs using traditional metallic interconnects that can scale to 1000 cores and beyond, is proving to be a significant challenge of enormous proportions. Research has shown that emerging technologies such as photonics and wireless have the potential to alleviate the critical bandwidth, power, and latency challenges of future NoCs. However, hybrid NoC designs taking advantages of both photonics and wireless technologies have not been explored. This research proposes to lay the groundwork for completely re-thinking the NoC design and proposes to explore heterogeneity of emerging interconnect technology for designing performance scalable, and power-efficient NoCs. The overall objective is to combine multiple technologies to achieve our challenging goals of (1) scalability to 1000 cores, (2) power efficiency of at least a 50% power reduction as compared to the state-of-the-art metallic interconnects, and (3) high bandwidth and low latency across a wide variety of applications. First, at the architecture level, optics will be deployed for short-range ( 100 cores) to improve local communication and wireless for long-range communication in order to scale the number of cores to 1000 by providing sufficient global bandwidth. Second, at the circuit level, hybrid transceiver architectures will be explored to integrate novel ultra-low power wireless circuits based on SiGe/BiCMOS technology with optical waveguides and ring-resonators to provide the large bandwidth desired for kilo-core designs. Furthermore, wireless communication requirements will be addressed by designing mm-wave/THz frequency broadband and directional antennas based on advanced 3D printing technology. This proposal describes a transformative and viable approach combining technology, architecture, algorithms and applications research for designing scalable and energy-efficient NoCs. The cross-cutting nature of this research will foster new research directions in several areas, spanning technology/energy-aware NoC design, novel computer architectures, and cutting-edge modeling and simulations tools for emerging technologies.
功耗已成为扩展所有平台(从手持式、嵌入式系统、笔记本电脑、服务器到数据中心)计算性能的基本障碍。技术缩小到亚纳米范围有助于增加每个芯片的晶体管数量,从而使多核架构成为利用并行性和提高性能的节能方法。只有连接核心的底层片上网络 (NoC) 能够在芯片的功率预算内提供所需的带宽,才能释放这些多核架构的计算能力。然而,事实证明,使用可扩展到 1000 个核心甚至更多的传统金属互连来设计高能效、低延迟和高带宽 NoC 是一项巨大的挑战。研究表明,光子学和无线等新兴技术有潜力缓解未来片上网络面临的关键带宽、功耗和延迟挑战。然而,尚未探索利用光子学和无线技术的混合 NoC 设计。本研究旨在为彻底重新思考 NoC 设计奠定基础,并建议探索新兴互连技术的异构性,以设计性能可扩展且高能效的 NoC。总体目标是结合多种技术来实现我们具有挑战性的目标:(1) 可扩展至 1000 个内核,(2) 与最先进的金属互连相比,功率效率至少降低 50%,以及(3) 跨多种应用的高带宽和低延迟。首先,在架构层面,将部署光学器件用于短距离(100个核心),以改善本地通信,并采用无线技术进行远程通信,以便通过提供足够的全局带宽将核心数量扩展到1000个。其次,在电路层面,将探索混合收发器架构,将基于 SiGe/BiCMOS 技术的新型超低功耗无线电路与光波导和环形谐振器集成,以提供千核设计所需的大带宽。此外,无线通信需求将通过基于先进3D打印技术设计毫米波/太赫兹频率宽带和定向天线来满足。该提案描述了一种结合技术、架构、算法和应用研究的变革性可行方法,用于设计可扩展且节能的片上网络。这项研究的跨领域性质将在多个领域培育新的研究方向,涵盖技术/能源感知 NoC 设计、新颖的计算机架构以及新兴技术的尖端建模和仿真工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Nanoscale Accelerators for Artificial Neural Networks
人工神经网络纳米级加速器
- DOI:
10.1109/mnano.2022.3208757 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:1.6
- 作者:
Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi - 通讯作者:
Fabrizio Lombardi
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似国自然基金
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant