Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
基本信息
- 批准号:2311543
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The on-chip communication fabric connecting the cores, accelerators and the memory in chiplet-based architectures consumes a significant amount of power today and must be designed to not only provide adequate connectivity and performance, but also be very energy efficient and scalable, to satisfy future computing demands. Silicon photonics has the potential to alleviate some of the on-chip communication problems thanks to better performance-per-watt and higher bandwidth density. A key issue in addressing this design challenge today is the under-utilization of the expensive silicon photonics technology due to temporal and spatial fluctuation of traffic patterns. To make silicon photonics practical and viable, re-purposing the under-utilized resources for computation can speed up application execution and provide much-needed energy-efficient data transfers. The proposed research is timely and vital for the continued growth of chiplet-based heterogeneous manycore architectures. It is an organized effort that combines recent advances in technology, architecture, application, and machine learning into a promising integrated approach that will tackle one of the most critical challenges of computing systems of the future, namely the design of next-generation communication fabrics for high-performance, energy-efficient and scalable heterogeneous architectures with much-increased functionality and flexibility. All the research findings and simulation toolkits will be disseminated to the community via conference and journal publications, and a dedicated website. The research will also play a major role in education by integrating discovery with teaching and training. This research will continue to expand on outreach activities and broadening participation in computing by making the necessary efforts to attract and train underrepresented and minority students in this field. This research will design a novel, dual-purpose photonic fabric that will not only enable power-efficient and scalable on-chip communications for heterogeneous multicores but will also function as a cost-efficient and high-performance neural network accelerator for diverse applications. The crux of the idea is to: (1) provide high-bandwidth and power-efficient data transfer between cores and accelerators during high network load, and (2) off-load key accelerator functions to the same network during low network load to maximize resource utilization and speedup computation, hence the dual-purpose nature of the photonic fabric. It is expected that the combined effects of meticulously orchestrating data communication (on-chip and off-chip), sharing hardware resources between communication and computation, and implementing optical neural computations will provide an extremely power-efficient and scalable platform for next-generation heterogeneous chiplet-based architectures. This research will result in (1) novel photonic architectures that can be leveraged for computing and communication simultaneously, (2) a fundamental understanding of photonic computation for implementing accelerator functions, (3) hardware techniques for photonic architectures to dynamically adapt to application demands to maximize the power-efficiency and improve resiliency, and (4) proof-of-concept and open-source tools that will expand and enhance the research capabilities of the computer architecture community in this critical area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,在基于小芯片的架构中连接内核、加速器和存储器的片上通信结构消耗大量功率,其设计必须不仅提供足够的连接性和性能,而且还必须非常节能和可扩展,以满足未来的计算需求。由于更好的每瓦性能和更高的带宽密度,硅光子有可能缓解一些片上通信问题。当今解决这一设计挑战的一个关键问题是由于流量模式的时间和空间波动而导致昂贵的硅光子技术的利用不足。为了使硅光子学变得实用和可行,重新利用未充分利用的计算资源可以加快应用程序的执行速度并提供急需的节能数据传输。所提出的研究对于基于小芯片的异构众核架构的持续增长是及时且至关重要的。这是一项有组织的工作,将技术、架构、应用程序和机器学习方面的最新进展结合成一种有前途的集成方法,该方法将解决未来计算系统最关键的挑战之一,即下一代通信结构的设计高性能、节能和可扩展的异构架构,功能和灵活性大大增强。所有研究成果和模拟工具包将通过会议和期刊出版物以及专门网站向社区传播。该研究还将发现与教学和培训相结合,在教育中发挥重要作用。这项研究将继续扩大外展活动,并通过做出必要的努力吸引和培训该领域的代表性不足和少数族裔学生,扩大计算机领域的参与。这项研究将设计一种新颖的双用途光子结构,它不仅可以实现异构多核的高能效和可扩展的片上通信,而且还可以作为各种应用的经济高效和高性能的神经网络加速器。该想法的关键在于:(1) 在高网络负载期间在内核和加速器之间提供高带宽和高能效的数据传输,以及 (2) 在低网络负载期间将关键加速器功能卸载到同一网络,以最大化资源利用和加速计算,因此光子结构具有双重用途。预计精心编排数据通信(片内和片外)、在通信和计算之间共享硬件资源以及实施光神经计算的综合效果将为下一代异构网络提供极其节能和可扩展的平台。基于小芯片的架构。这项研究将产生(1)可同时用于计算和通信的新型光子架构,(2)对用于实现加速器功能的光子计算的基本理解,(3)用于动态适应应用需求的光子架构的硬件技术最大限度地提高能效并提高弹性,以及 (4) 概念验证和开源工具,将扩展和增强计算机体系结构社区在这一关键领域的研究能力。该奖项反映了 NSF 的法定使命,并已被视为值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Nanoscale Accelerators for Artificial Neural Networks
人工神经网络纳米级加速器
- DOI:
10.1109/mnano.2022.3208757 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:1.6
- 作者:
Farzad Niknia;Ziheng Wang;Shanshan Liu;Ahmed Louri;Fabrizio Lombardi - 通讯作者:
Fabrizio Lombardi
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
- 批准号:
1513923 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant