FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
基本信息
- 批准号:1911067
- 负责人:
- 金额:$ 49.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to address the present performance and energy efficiency crisis in computing across broad areas of data-driven applications by developing energy-efficient new spiking neural architectures, training algorithms, and hardware computing devices. Inspirations from biological brains will be taken to support the development of algorithms and hardware systems to close the widening gap between the supply and demand of computing power. The outcomes from this project will be strongly interdisciplinary and are expected to stimulate technical advancements in machine learning and bridge between neural networks, neuroscience, and hardware engineering. The research will provide rich training and educational opportunities to students. Research participation from undergraduate students and underrepresented groups will be promoted through various outreach programs. The results of this project will be disseminated in broad research and industrial communities and integrated into the graduate-level curriculum. Research collaboration with industry will be sought to guide this work toward addressing real-world challenges and provide mentoring and training of students in the industrial setting. Brain-inspired models of computation and hardware computing systems hold the promise of delivering the amount of computing power required in processing increasingly large volumes of data in the post Moore's Law era, without a correspondingly high energy cost. This project will focus on improving the performances of spiking neural models for real-life learning tasks by addressing two pressing inter-dependent research roadblocks: lack of computationally powerful learning architectures, and lack of practical algorithms that can effectively train complex spiking neural models. Synergies between neuroscience and deep learning will be explored to develop heterogeneous deep spiking neural architectures and learning algorithms to address the corresponding training bottlenecks. Efficient spiking neural processors will be demonstrated on reconfigurable computing devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发节能新的尖峰神经体系结构,培训算法和硬件计算设备来解决当前数据驱动应用程序跨数据驱动应用程序的计算危机。 将采取来自生物大脑的灵感来支持算法和硬件系统的开发,以缩小计算能力供求之间的扩大差距。该项目的结果将是强烈的跨学科,并有望刺激机器学习的技术进步以及神经网络,神经科学和硬件工程之间的桥梁。该研究将为学生提供丰富的培训和教育机会。本科生和代表性不足的小组的研究参与将通过各种外展计划促进。 该项目的结果将在广泛的研究和工业社区中传播,并融入研究生级课程中。将寻求与行业的研究合作,以指导这项工作,以应对现实世界中的挑战,并在工业环境中为学生提供指导和培训。脑启发的计算和硬件计算系统的模型具有提供在摩尔法律时代处理日益大量数据所需的计算能力量,而没有相应的高能量成本。该项目将着重于通过解决两个紧迫的相互依存的研究障碍来改善现实生活中的神经模型的表现:缺乏计算功能强大的学习体系结构,以及缺乏可以有效地训练复杂尖峰神经模型的实用算法。神经科学和深度学习之间的协同作用将探索,以开发异质的深度尖峰神经体系结构和学习算法,以解决相应的培训瓶颈。可在可重构计算设备上证明有效的尖峰神经处理器。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
Pandemic babies? Fertility in the aftermath of the first COVID-19 wave across European regions
流行病婴儿?
- DOI:
10.4054/mpidr-wp-2022-027 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Natalie Nitsche;Aiva Jasilioniene;Jessica Nisén;Peng Li;M. S. Kniffka;Jonas Schöley;G. Andersson;Christos Bagavos;A. Berrington;Ivan Čipin;Susana Clemente;L. Dommermuth;P. Fallesen;Dovilė Galdauskaitė;D. Jemna;Mathias Lerch;Cadhla McDonnell;A. Muller;K. Neels;Olga Pötzsch;Diego Ramiro;B. Riederer;Saskia te Riele;L. Szabó;L. Toulemon;Daniele Vignoli;K. Zeman;Tina Žnidaršič - 通讯作者:
Tina Žnidaršič
ROS2 Real-time Performance Optimization and Evaluation
ROS2实时性能优化与评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.2
- 作者:
Yanlei Ye;Zhenguo Nie;Xinjun Liu;Fugui Xie;Zihao Li;Peng Li - 通讯作者:
Peng Li
Outcome of Adenotonsillectomy for Obstructive Sleep Apnea Syndrome in Children
腺样体扁桃体切除术治疗儿童阻塞性睡眠呼吸暂停综合征的结果
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Ye;Hui Liu;Gehua Zhang;Peng Li;Qintai Yang;Xian Liu;Yuan Li - 通讯作者:
Yuan Li
Retrospective estimation of the time-varying effective reproduction number for a COVID-19 outbreak in Shenyang, China: An observational study
中国沉阳市 COVID-19 疫情随时间变化的有效繁殖数的回顾性估计:一项观察性研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Peng Li;Lihai Wen;Baijun Sun;Wei Sun;Huijie Chen - 通讯作者:
Huijie Chen
Internal modification of Thermal-Extruded Polymethyl Pentene
热挤压聚甲基戊烯的内部改性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
G. Zhu;Jing Xiang;D. Zhou;Peng Li;Hanwen Ou;Xihao Chen - 通讯作者:
Xihao Chen
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
- 批准号:
2144216 - 财政年份:2022
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956313 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
2000851 - 财政年份:2019
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
- 批准号:
1940761 - 财政年份:2019
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
1810125 - 财政年份:2018
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
- 批准号:
1740531 - 财政年份:2017
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
相似国自然基金
从III型干扰素对RPE的调控探讨Behcet病和Vogt-小柳原田综合征发病机制的同质性和异质性
- 批准号:82371046
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
基于3T USPIO-SWI脑小血管活体可视化成像技术探索脑白质高信号异质性的机制研究
- 批准号:82202085
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
UHRF1/DNMT1-MZF1轴调控PRSS3选择性剪接影响非小细胞肺癌功能异质性的表观机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非小细胞肺癌高异质性介导的核苷类抗肿瘤药物耐药机制及逆转耐药研究
- 批准号:82274003
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
UHRF1/DNMT1-MZF1轴调控PRSS3选择性剪接影响非小细胞肺癌功能异质性的表观机制
- 批准号:32200462
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CSR: Small: CONCERT: Designing Scalable Communication Runtimes with On-the-fly Compression for HPC and AI Applications on Heterogeneous Architectures
CSR:小型:CONCERT:为异构架构上的 HPC 和 AI 应用程序设计具有动态压缩的可扩展通信运行时
- 批准号:
2312927 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CAREER: Learning from Heterogeneous Populations in Small Data Regime with Applications to Preference and Metric Learning
职业:在小数据体制中向异质群体学习并应用于偏好和度量学习
- 批准号:
2238876 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant