CAREER: Compact digital biosensing system enabled by localized acoustic streaming

职业:由局部声流驱动的紧凑型数字生物传感系统

基本信息

  • 批准号:
    2144216
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Rapid, portable, and accurate diagnostic testing is of great importance to improve the quality and accessibility of healthcare. However, the performance of existing rapid and portable testing methods is often not sufficient for complex diseases such as infectious diseases, cancer, and cardiovascular diseases. The major goal of this CAREER project is to develop a new digital testing platform that offers high detection sensitivity and quantification accuracy without sacrificing the simplicity and the portability. The new testing platform is enabled by the unique fluid phenomenon induced by a vibrating capillary and 3D printed microdevices. Upon the successful completion of this project, integrated devices that can detect low abundance nucleic acid and protein biomarkers without the need of dedicated instrument and laboratory space will be developed. Such devices will have great potential to deliver high quality medical testing to a broad population including underserved communities and resource limited regions. This project is highly multidisciplinary and will produce low cost, and compact instrumentation. It therefore creates unique educational opportunities for students with diverse backgrounds. The proposal will enable 1) improved learning outcomes for students in quantitative chemical analysis lab through implementing project- and problem-based learning concepts to the curriculum; 2) novel microscale analytical chemistry experiments for undergraduate students, e.g., vibrating sharp-tip powered microfluidic enzymatic assay; 3) a research program that trains students to solve research problems using multidisciplinary approaches.This project is to develop an integrated solution to perform complete digital bioassays under a point-of-care (POC) setting thereby addressing the unmet need of developing high performance POC tests. The proposed method is enabled by controlling the vibration of sharp tips, which can generate localized and individually addressable acoustic streaming in microchannels for fluid control and droplet generation. To achieve the proposed impact, three aims will be pursued: 1) Elucidate the sharp-tip droplet generation process through numerical modeling and streaming analysis and demonstrate a POC nucleic acids detection system; 2) Develop a simple dual flow droplet generation system for performing digital ELISA; 3) Demonstrate an integrated the sample processing system enabled by vibrating sharp-tip and composable microfluidic plates. This project will lead to a flexible biosensing platform that can be easily adapted to measure either low abundance nucleic acids or protein biomarkers. It will also advance the fundamental understanding of the acoustic streaming in immiscible fluids and expand the utility of acoustic streaming for complex fluid, droplet, and particle manipulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
快速、便携式和准确的诊断测试对于提高医疗保健的质量和可及性非常重要。然而,现有的快速便携式检测方法的性能往往不足以应对传染病、癌症和心血管疾病等复杂疾病。该 CAREER 项目的主要目标是开发一种新的数字测试平台,在不牺牲简单性和便携性的情况下提供高检测灵敏度和定量准确性。新的测试平台是通过振动毛细管和 3D 打印微型器件引发的独特流体现象实现的。该项目成功完成后,将开发出无需专用仪器和实验室空间即可检测低丰度核酸和蛋白质生物标志物的集成设备。此类设备将具有巨大的潜力,可以为广大人群(包括服务欠缺的社区和资源有限的地区)提供高质量的医疗检测。该项目是高度多学科的,将生产低成本、紧凑的仪器。因此,它为具有不同背景的学生创造了独特的教育机会。该提案将实现 1) 通过在课程中实施基于项目和问题的学习概念,提高定量化学分析实验室学生的学习成果; 2)为本科生提供新颖的微尺度分析化学实验,例如振动尖头动力微流控酶测定; 3) 一个研究项目,培训学生使用多学科方法解决研究问题。该项目旨在开发一个集成解决方案,在即时护理 (POC) 环境下执行完整的数字生物测定,从而解决开发高性能 POC 的未满足需求测试。所提出的方法是通过控制尖锐尖端的振动来实现的,尖端的振动可以在微通道中产生局部且可单独寻址的声流,用于流体控制和液滴生成。为了实现所提出的影响,我们将追求三个目标:1)通过数值建模和流分析阐明尖头液滴的生成过程,并演示 POC 核酸检测系统; 2) 开发一个简单的双流液滴生成系统,用于进行数字 ELISA; 3) 展示通过振动尖头和可组合微流控板实现的集成样品处理系统。该项目将打造一个灵活的生物传感平台,可以轻松适应测量低丰度核酸或蛋白质生物标志物。它还将增进对不混溶流体中声流的基本理解,并扩展声流在复杂流体、液滴和粒子操纵中的实用性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Li其他文献

Pandemic babies? Fertility in the aftermath of the first COVID-19 wave across European regions
流行病婴儿?
  • DOI:
    10.4054/mpidr-wp-2022-027
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natalie Nitsche;Aiva Jasilioniene;Jessica Nisén;Peng Li;M. S. Kniffka;Jonas Schöley;G. Andersson;Christos Bagavos;A. Berrington;Ivan Čipin;Susana Clemente;L. Dommermuth;P. Fallesen;Dovilė Galdauskaitė;D. Jemna;Mathias Lerch;Cadhla McDonnell;A. Muller;K. Neels;Olga Pötzsch;Diego Ramiro;B. Riederer;Saskia te Riele;L. Szabó;L. Toulemon;Daniele Vignoli;K. Zeman;Tina Žnidaršič
  • 通讯作者:
    Tina Žnidaršič
ROS2 Real-time Performance Optimization and Evaluation
ROS2实时性能优化与评估
Outcome of Adenotonsillectomy for Obstructive Sleep Apnea Syndrome in Children
腺样体扁桃体切除术治疗儿童阻塞性睡眠呼吸暂停综合征的结果
Retrospective estimation of the time-varying effective reproduction number for a COVID-19 outbreak in Shenyang, China: An observational study
中国沉阳市 COVID-19 疫情随时间变化的有效繁殖数的回顾性估计:一项观察性研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Peng Li;Lihai Wen;Baijun Sun;Wei Sun;Huijie Chen
  • 通讯作者:
    Huijie Chen
Internal modification of Thermal-Extruded Polymethyl Pentene
热挤压聚甲基戊烯的内部改性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Zhu;Jing Xiang;D. Zhou;Peng Li;Hanwen Ou;Xihao Chen
  • 通讯作者:
    Xihao Chen

Peng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Li', 18)}}的其他基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    1956313
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    2000851
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1911067
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1948201
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
  • 批准号:
    1940761
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    1810125
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
  • 批准号:
    1740531
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非结构网格的高精度CESE格式
  • 批准号:
    11901602
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
带有源项双曲守恒律系统的保平衡性质高精度杂交格式及其应用
  • 批准号:
    11801383
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用
  • 批准号:
    11871428
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
可压缩多介质流体力学的广义黎曼问题数值方法
  • 批准号:
    11771054
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
非线性双曲方程的高阶HWENO方法的研究和应用
  • 批准号:
    11601364
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Digital biomarkers for Alzheimer's Disease with compact dual-mode brain sensing
具有紧凑型双模式脑传感功能的阿尔茨海默病数字生物标记
  • 批准号:
    10526163
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices
适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路
  • 批准号:
    10374161
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices
适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路
  • 批准号:
    10218893
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Development of wide-band high-speed compact digital camera for cosmic hard X-ray observation
用于宇宙硬X射线观测的宽带高速紧凑型数码相机的研制
  • 批准号:
    18H01256
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Shear Wave Elastography of Myofascial Trigger Points Using a Compact Scanner
使用紧凑型扫描仪进行肌筋膜触发点的剪切波弹性成像
  • 批准号:
    9236961
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了