SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks

SHF:小型:尖峰神经网络优化和硬件加速的方法和架构

基本信息

  • 批准号:
    2310170
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Artificial intelligence is a powerful cross-cutting technology and is expected to promote broad advancements in science and technology as well as foster social benefits. To this end, exploring novel computational principles inspired by the brain may offer promising new avenues to enable artificial intelligence. This project is positioned to address key challenges in designing and engineering brain-inspired spiking neural models. As such, it may lead to methods, tools, and hardware system designs that will ultimately support new generations of software- and hardware-based artificial intelligence systems with potentially significantly improved performance and efficiency. This project will produce educational materials to be integrated into undergraduate- and graduate-level curricula on artificial intelligence and hardware system design, thereby providing workforce training opportunities in these areas of importance. The principal investigator will actively recruit undergraduate, underrepresented, and female students for research participation and training while partnering with various outreach programs. The results of this award may be derived in a variety of forms, including algorithms, software design tools, and hardware architectures and implementations that will be disseminated in broad research and industrial communities through publications, workshops, talks, and research collaborations. Engagement with US high-tech industries and other research organizations will be sought to broaden the impact of this work, promote potential technology transfer into practice, and offer additional mentoring and training of students under diverse industrial and research settings.Deep learning based on conventional non-spiking artificial neural networks (ANNs) has achieved great success in many application domains in recent years. Nevertheless, the conventional ANNs cannot immediately explore temporal codes and lack energy-efficient event-based processing. On the other hand, it is believed that attaining near-human-level intelligence requires computing paradigms that better mimic biological brains. As such, spiking neural networks (SNNs) offer a complementary biologically-plausible approach to facilitating future artificial intelligence systems. However, there are key roadblocks to a wider adoption of spiking neural networks. SNNs are much harder to train than conventional ANNs. There is a general lack of insights and systemic approaches for designing computationally-powerful SNNs, particularly SNNs with recurrent connections. Hardware acceleration of SNNs is hampered by complex data dependencies across both time and space, and unstructured firing sparsity. This work will start out by developing much needed accurate SNN training methods that can robustly learn precise temporal behavior and jointly tune spike count and spike timing. Scalable architectural design of recurrent SNNs and novel automated spiking neural structural optimization methods will be developed to support the design of computationally powerful SNNs. To enable energy-efficient high-throughput hardware acceleration, dedicated SNN hardware accelerator architectures that minimize expensive data movements and facilitate parallel processing in both space and time will be designed. Application-independent spike coding, spike compression, and architectures exploring unstructured firing sparsity will be investigated for SNN hardware acceleration. High-performance SNN hardware accelerators will be demonstrated on field-programmable gate-array devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能是一项强大的跨切割技术,有望促进科学和技术方面的广泛进步,并促进社会利益。为此,探索受大脑启发的新型计算原理可能会提供有希望的新途径来实现人工智能。该项目的定位旨在应对设计和工程脑启发的尖峰神经模型的关键挑战。因此,它可能会导致方法,工具和硬件系统设计,最终将支持新一代的基于软件和硬件的人工智能系统,具有显着提高性能和效率。该项目将生产教育材料,以融入人工智能和硬件系统设计的本科和研究生级课程,从而在这些重要性领域提供劳动力培训机会。首席调查员将积极招募本科,代表性不足和女学生进行研究参与和培训,同时与各种外展计划合作。该奖项的结果可以以各种形式得出,包括算法,软件设计工具以及硬件体系结构和实施,这些算法将通过出版物,研讨会,演讲和研究合作在广泛的研究和工业社区中传播。将寻求与美国高科技行业和其他研究组织的参与,以扩大这项工作的影响,将潜在的技术转移促进实践,并为在多样化的工业和研究环境下提供对学生的额外指导和培训。近年来,基于传统的非加价人工神经网络(ANN),深入学习在近年来在许多应用领域取得了巨大的成功。然而,传统的ANN无法立即探索时间代码,并且缺乏基于节能的事件处理。另一方面,据信,达到近乎人类的智能需要更好地模拟生物学大脑的计算范式。因此,尖峰神经网络(SNNS)提供了一种互补的生物学知识方法来促进未来的人工智能系统。但是,更广泛地采用尖峰神经网络有关键的障碍。 SNN比传统的ANN更难训练。通常缺乏用于设计计算功能的SNN的见解和系统方法,尤其是具有经常性连接的SNN。 SNN的硬件加速度受到时间和空间的复杂数据依赖性以及非结构化的触发性的阻碍。这项工作将开始开发急需的准确的SNN训练方法,这些方法可以鲁and学习精确的时间行为,并共同调整尖峰计数和尖峰计时。将开发复发性SNN和新型自动尖峰神经结构优化方法的可扩展体系结构设计,以支持计算功能强大的SNN的设计。为了启用节能高通量硬件加速度,专用的SNN硬件加速器体系结构将设计最小化昂贵的数据移动并促进时空和时间的并行处理。将研究与应用程序无关的尖峰编码,尖峰压缩和架构探索非结构化的射击稀疏性,以进行SNN硬件加速度。高性能SNN硬件加速器将在现场可编程的栅极阵列设备上进行证明。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Li其他文献

Pandemic babies? Fertility in the aftermath of the first COVID-19 wave across European regions
流行病婴儿?
  • DOI:
    10.4054/mpidr-wp-2022-027
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natalie Nitsche;Aiva Jasilioniene;Jessica Nisén;Peng Li;M. S. Kniffka;Jonas Schöley;G. Andersson;Christos Bagavos;A. Berrington;Ivan Čipin;Susana Clemente;L. Dommermuth;P. Fallesen;Dovilė Galdauskaitė;D. Jemna;Mathias Lerch;Cadhla McDonnell;A. Muller;K. Neels;Olga Pötzsch;Diego Ramiro;B. Riederer;Saskia te Riele;L. Szabó;L. Toulemon;Daniele Vignoli;K. Zeman;Tina Žnidaršič
  • 通讯作者:
    Tina Žnidaršič
ROS2 Real-time Performance Optimization and Evaluation
ROS2实时性能优化与评估
Outcome of Adenotonsillectomy for Obstructive Sleep Apnea Syndrome in Children
腺样体扁桃体切除术治疗儿童阻塞性睡眠呼吸暂停综合征的结果
Retrospective estimation of the time-varying effective reproduction number for a COVID-19 outbreak in Shenyang, China: An observational study
中国沉阳市 COVID-19 疫情随时间变化的有效繁殖数的回顾性估计:一项观察性研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Peng Li;Lihai Wen;Baijun Sun;Wei Sun;Huijie Chen
  • 通讯作者:
    Huijie Chen
Internal modification of Thermal-Extruded Polymethyl Pentene
热挤压聚甲基戊烯的内部改性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Zhu;Jing Xiang;D. Zhou;Peng Li;Hanwen Ou;Xihao Chen
  • 通讯作者:
    Xihao Chen

Peng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Li', 18)}}的其他基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
  • 批准号:
    2144216
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    1956313
  • 财政年份:
    2020
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    2000851
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1911067
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1948201
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
  • 批准号:
    1940761
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    1810125
  • 财政年份:
    2018
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
  • 批准号:
    1740531
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant

相似国自然基金

基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
  • 批准号:
    82304385
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于加权隐私保护计算的非小细胞肺癌辅助诊断方法研究
  • 批准号:
    62301006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
  • 批准号:
    82304238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机小分子插入共价有机框架调控电化学发光性能及对铀的分析新方法研究
  • 批准号:
    22376023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
  • 批准号:
    2312220
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
  • 批准号:
    2223704
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
SHF: Small: Algorithms and Software for Scalable Kernel Methods
SHF:小型:可扩展核方法的算法和软件
  • 批准号:
    1817048
  • 财政年份:
    2018
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
SHF: Small: Formal Methods for Modern System Configuration Languages
SHF:小:现代系统配置语言的形式化方法
  • 批准号:
    1717636
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
SHF:Small:New models, design, and test methods for long-term aging of nanometer VLSI
SHF:Small:纳米VLSI长期老化的新模型、设计和测试方法
  • 批准号:
    1719047
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了