Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits

合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障

基本信息

  • 批准号:
    1956313
  • 负责人:
  • 金额:
    $ 63.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

While the proliferation of electronics has been driven by computing and consumer applications for a long time, integrated circuits (ICs) presently undergo accelerated integration into healthcare, transportation, robotics, and autonomous systems. In addition to provision of prescribed functionalities of sensing, computing, and processing, these ICs must meet stringent reliability specifications in order to safeguard performance and safety of the whole mission-critical system where deployed. Circuits designed to be fail-safe by design exhibit low occurrences of failure. However, having a sign of no failure under typical verification and test procedures yields no guarantee for meeting a given near-zero or extremely-low failure specification. On the other hand, exhaustiveness may never be achieved by brute-force failure detection, which results in an unacceptably high cost in simulation and testing. This project will develop efficient machine-learning techniques for extremely-rare circuit-failure detection without needing large amounts of expensive simulation or test data. The proposed techniques will enable cost-effective verification and test of reliability-critical ICs and mission-critical systems in general. The research undertaken will also enable the two groups at UC Santa Barbara and UT Dallas to educate and train undergraduate and graduate students, including women and underrepresented groups, thus expanding the and contributing to the much needed US technological workforce. It is believed that extracting critical failure information via machine learning within practical limits of available measurement or simulation data can go a long way towards extremely rare failure detection. This project centers on developing an active-learning framework that intelligently samples in the high-dimensional space of complex interacting design parameters, manufacturing variations, and operating conditions, achieving the goal of data-efficient detection of rare circuit failures. The targeted active-learning framework will be supported by the development of machine-learning model foundations and robust learning methods that can scale to high-dimensional parameter spaces. The key objective of this project is to make extremely-rare failure discovery and identification of the underlying failure mechanisms practically viable by extracting the maximum amount of useful information possible from a small amount of available data. The proposed extremely-rare failure discovery work will be broadly applicable to verification and failure analysis of analog, mixed-signal, radio-frequency, and memory circuits with stringent failure specifications and many other types of mission-critical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然很长一段时间以来,电子设备的扩散是由计算和消费者应用驱动的,但目前正在加速进入医疗保健,运输,机器人技术和自治系统的综合电路(ICS)。除了提供传感,计算和处理的规定功能外,这些IC还必须符合严格的可靠性规范,以维护部署的整个关键任务系统的绩效和安全性。设计为故障安全的电路表现出较低的故障出现。但是,在典型验证和测试程序中没有故障的迹象不能保证满足给定的接近零或极低的失败规范。另一方面,蛮力失败的检测永远无法实现,这导致模拟和测试的成本高昂。该项目将开发有效的机器学习技术,用于极度稀有的电路检测,而无需大量昂贵的模拟或测试数据。所提出的技术将启用具有成本效益的验证,并总体上对关键性IC和关键任务系统的测试。 进行的研究还将使圣塔芭芭拉分校和乌特·达拉斯分校的两个小组能够教育和培训本科生和研究生,包括妇女和代表性不足的群体,从而扩大并为美国急需的美国技术劳动力做出了贡献。据信,在可用测量的实际限制内通过机器学习提取关键的故障信息或模拟数据可能对极罕见的失败检测有很大帮助。该项目集中在开发一个主动学习框架上,该框架在复杂的相互作用设计参数,制造变化和操作条件的高维空间中智能采样,实现了对稀有电路故障的数据有效检测的目标。有针对性的主动学习框架将由机器学习模型基础的开发和可靠的学习方法来支持,这些方法可以扩展到高维参数空间。该项目的关键目的是通过从少量可用数据中提取最大可能的有用信息,对基本故障机制进行极度稀有的故障发现和识别。拟议的极其稀有的失败发现工作将广泛适用于对模拟,混合信号,射频和记忆循环的验证和失败分析,具有严格的失败规格以及许多其他类型的关键任务 - 任务 - 关键系统。这奖反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的crietia进行评估,可以通过评估来进行评估。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Gating Architecture for Rare Failure Detection of Analog and Mixed-Signal Circuits
用于模拟和混合信号电路罕见故障检测的可逆门控架构
Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns
  • DOI:
    10.1109/itc44778.2020.9325225
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanbin Hu;Nguyen Nguyen-Nguyen;Chen He;Peng Li
  • 通讯作者:
    Hanbin Hu;Nguyen Nguyen-Nguyen;Chen He;Peng Li
Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning
使用特定领域数据增强和对比学习的半监督晶圆图模式识别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Li其他文献

A NOVEL PROTEIN THERAPEUTIC JOINT RETENTION STRATEGY BASED ON COLLAGEN-BINDING AVIMERS # Running Title : Cartilage tethering collagen-binding Avimers
基于胶原蛋白结合 avimers 的新型蛋白质治疗性关节保留策略
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. McBride;B. P. Yoon;Angela;M. Willee;Amy N. Duguay;Melissa Thomas;Bin Fan;M. Dayao;B. James;Rottman;Kim Merriam;Jiansong Xie;Richard Smith;Benjamin M. Alba;Ryan Case;K. Dang;Anielka Montalvan;N. Grinberg;Hong Sun;R. Black;A. Christopher;Gabel;J. Sims;Kevin W Moore;A. Bakker;Peng Li
  • 通讯作者:
    Peng Li
Sequencing on an imported case in China of COVID‐19 Delta variant emerging from India in a cargo ship in Zhoushan, China
对中国舟山一艘货船上从印度出现的中国输入性 COVID-19 Delta 变种病例进行测序
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    12.7
  • 作者:
    Bing;Hui Zhang;Yuchao Wang;A. Tang;Ke;Peng Li;Jiabei Chen;Hongling Wang;Jian
  • 通讯作者:
    Jian
Method for optimising the performance of PML in anchor‐loss limited model via COMSOL
通过 COMSOL 优化锚损失有限模型中 PML 性能的方法
Correlating 2D histological slice with 3D MRI image volume using smart phone as an interactive tool for muscle study
使用智能手机作为肌肉研究的交互式工具,将 2D 组织切片与 3D MRI 图像体积相关联
Ultrathin interfacial layer with suppressed room temperature magnetization in magnesium aluminum ferrite thin films
镁铝铁氧体薄膜中室温磁化受到抑制的超薄界面层
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    J. Wisser;S. Emori;L. Riddiford;A. Altman;Peng Li;K. Mahalingam;Brittany T. Urwin;B. Howe;M. Page;A. Grutter;B. Kirby;Yuri Suzuki
  • 通讯作者:
    Yuri Suzuki

Peng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Li', 18)}}的其他基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
  • 批准号:
    2144216
  • 财政年份:
    2022
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    2000851
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1911067
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1948201
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
  • 批准号:
    1940761
  • 财政年份:
    2019
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    1810125
  • 财政年份:
    2018
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
  • 批准号:
    1740531
  • 财政年份:
    2017
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 63.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了