III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments

III:小:真实异构动态环境中的多设备协作学习

基本信息

  • 批准号:
    2311990
  • 负责人:
  • 金额:
    $ 59.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

In collaborative learning, different devices such as smartphones or organizations like banks or hospitals learn together, using their own (sometimes private) data to build a shared model. This project tackles the challenge of scaling up this kind of learning for large, constantly changing, and diverse datasets. It proposes a move away from traditional computing systems, towards more flexible systems that can handle changing data types, decentralized computing, and different strategies between learning devices. Currently, problems arise from the diverse nature and volume of real-world data, like user photos, surveillance videos, or medical information. Present collaborative learning schemes often try to average out the learning updates from all devices, ignoring the individual characteristics of each device and their unique computing abilities. Moreover, these systems struggle with "free riding", where some participants benefit from the improved learning model without contributing any data. This difficulty calls for creating fitting incentives to encourage equal participation. The goal of this project is to improve collaborative learning by solving these issues, resulting in more efficient and fair learning systems that cater to individual devices' unique characteristics. This advancement goes beyond improving machine learning as it encourages data sharing, participation, and inclusivity, bringing about broader societal benefits. Current collaborative learning frameworks often achieve consensus by averaging model updates from participating agents, an approach that may disregard the unique attributes and diverse hardware capabilities of the agents involved. Such an oversight could lead to a mismatch between the model architecture and the hardware capabilities of specific devices, particularly edge devices with limited memory or computational power, thereby impeding efficient model training or underutilizing available resources. Additionally, the extant collaborative learning frameworks tend to overlook crucial factors such as algorithm trustworthiness and mechanism design. These challenges highlight the urgent need for a reimagined approach to collaborative learning. This project focuses on the development of a collaborative learning framework specifically designed for dynamic and diverse environments, with particular emphasis on standard hardware computing platforms, such as those comprising edge devices. The project's objectives are threefold: First, it seeks to innovate model-parallel collaborative learning by designing unique model architectures and efficient algorithms, underpinned by theoretical explorations employing a structured variational inference approach. Second, the project aims to facilitate the creation of practical, efficient training and communication learning algorithms for on-device usage. This aim will be achieved by introducing new algorithmic components and an authentic on-device testing platform. Lastly, the project intends to evaluate the system's trustworthiness and mechanism design in a decentralized setting. It will design incentives that promote data sharing and algorithm adoption, thereby maximizing benefits at both the community and individual levels. The project's targeted applications encompass disaster forecasting, AI-assisted clinical diagnosis, and treatment, and decentralized strategic decision-making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在协作学习中,使用自己的(有时是私人)数据来构建共享模型,例如银行或医院等不同的设备(例如银行或医院)一起学习。该项目应对大型,不断变化和多样化的数据集扩展这种学习的挑战。它提议从传统的计算系统转向更灵活的系统,这些系统可以处理不断变化的数据类型,分散计算以及学习设备之间的不同策略。当前,问题是由现实数据的多样性和数量引起的,例如用户照片,监视视频或医疗信息。当前的协作学习方案通常试图平均从所有设备中平均学习更新,而忽略了每个设备的个人特征及其独特的计算能力。此外,这些系统在“自由骑行”中遇到了困难,其中一些参与者从改进的学习模型中受益,而无需贡献任何数据。这个困难要求创造合适的激励措施来鼓励平等参与。该项目的目的是通过解决这些问题来改善协作学习,从而产生更高效,公平的学习系统,以迎合各个设备的独特特征。这种进步不仅仅是改善机器学习,因为它鼓励了数据共享,参与和包容性,从而带来了更广泛的社会利益。当前的协作学习框架通常通过平均参与代理的模型更新来达成共识,这种方法可能会忽略所涉及的代理的独特属性和多样化的硬件功能。这样的监督可能会导致模型体系结构与特定设备的硬件功能之间的不匹配,尤其是具有有限内存或计算能力的边缘设备,从而阻碍有效的模型培训或不利于可用资源。此外,现存的协作学习框架倾向于忽视关键因素,例如算法可信度和机制设计。这些挑战强调了迫切需要重新想象合作学习的方法。该项目的重点是专门为动态和多样化环境设计的协作学习框架的开发,特别着重于标准硬件计算平台,例如包括边缘设备的设备。该项目的目标是三倍:首先,它试图通过设计独特的模型体系结构和有效算法来创新模型并行协作学习,这是由理论探索采用结构化变分推断方法的基础的。其次,该项目旨在促进创建实用,高效的培训和交流学习算法以实现设备使用。通过引入新的算法组件和一个真实的内部设备测试平台来实现此目标。最后,该项目打算在分散的环境中评估系统的可信度和机制设计。它将设计激励措施,以促进数据共享和算法采用,从而最大程度地提高社区和个人层面的收益。该项目的针对性应用程序包括灾难预测,AI辅助临床诊断和治疗以及权力下放的战略决策。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Xing其他文献

What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
您的数据对 GPT 有何价值?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sang Keun Choe;Hwijeen Ahn;Juhan Bae;Kewen Zhao;Minsoo Kang;Youngseog Chung;Adithya Pratapa;W. Neiswanger;Emma Strubell;Teruko Mitamura;Jeff Schneider;Eduard Hovy;Roger Grosse;Eric Xing
  • 通讯作者:
    Eric Xing
An exploratory study of self-supervised pre-training on partially supervised multi-label classification on chest X-ray images
胸部X射线图像部分监督多标签分类自监督预训练的探索性研究
  • DOI:
    10.1016/j.asoc.2024.111855
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Nanqing Dong;Michael Kampffmeyer;Haoyang Su;Eric Xing
  • 通讯作者:
    Eric Xing

Eric Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Xing', 18)}}的其他基金

ML Basis for Intelligence Augmentation:Toward Personalized Modeling, Reasoning under Data-Knowledge Symbiosis, and Interpretable Interaction for AI-assisted Human Decision-making
智能增强的机器学习基础:面向人工智能辅助人类决策的个性化建模、数据知识共生下的推理和可解释的交互
  • 批准号:
    2040381
  • 财政年份:
    2021
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
  • 批准号:
    2123952
  • 财政年份:
    2021
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
CNS Core: Small: Toward Globally-Optimal Resource Distribution and Computation Acceleration in Multi-Tenant and Heterogeneous Machine Learning Systems
CNS 核心:小型:在多租户和异构机器学习系统中实现全局最优资源分配和计算加速
  • 批准号:
    2008248
  • 财政年份:
    2020
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
  • 批准号:
    1617583
  • 财政年份:
    2016
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
XPS: FULL: Broad-Purpose, Aggressively Asynchronous and Theoretically Sound Parallel Large-scale Machine Learning
XPS:FULL:用途广泛、积极异步且理论上合理的并行大规模机器学习
  • 批准号:
    1629559
  • 财政年份:
    2016
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Theory and Algorithms for Parallel Probabilistic Inference with Big Data, via Big Model, in Realistic Distributed Computing Environments
BIGDATA:F:DKA:协作研究:在现实分布式计算环境中通过大模型进行大数据并行概率推理的理论和算法
  • 批准号:
    1447676
  • 财政年份:
    2014
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
  • 批准号:
    1218282
  • 财政年份:
    2012
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Using Large-Scale Image Data for Online Social Media Analysis
III:小:协作研究:使用大规模图像数据进行在线社交媒体分析
  • 批准号:
    1115313
  • 财政年份:
    2011
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Discovering and Exploiting Latent Communities in Social Media
协作研究:发现和利用社交媒体中的潜在社区
  • 批准号:
    1111142
  • 财政年份:
    2011
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Standard Grant
Indexing, Mining and Modeling Spatio-Temporal Patterns of Gene Expressions
基因表达时空模式的索引、挖掘和建模
  • 批准号:
    0640543
  • 财政年份:
    2007
  • 资助金额:
    $ 59.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于主-客体作用构建一体化小分子探针对脑中多种重要氨基酸的多通道同时检测
  • 批准号:
    21904040
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
多种植物小肽激素同时富集和纯化新方法的研究
  • 批准号:
    31800303
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
负载多种生物活性因子的纳米颗粒修饰异种小血管提高其抗血栓及内皮化性能研究
  • 批准号:
    81771991
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于多种动物模型的广谱抗甲型流感病毒小分子抗原肽的筛选
  • 批准号:
    81102286
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    青年科学基金项目
在细胞粘附与迁移中协调多种小GTP酶的Arap3的结构与功能研究
  • 批准号:
    31170693
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Single domain antibodies for diagnosis and treatment of synucleinopathies
用于诊断和治疗突触核蛋白病的单域抗体
  • 批准号:
    10915130
  • 财政年份:
    2023
  • 资助金额:
    $ 59.94万
  • 项目类别:
Defining the role of SINE retrotransposons and inflammasome activation in Alzheimer's disease
定义 SINE 逆转录转座子和炎症小体激活在阿尔茨海默病中的作用
  • 批准号:
    10696066
  • 财政年份:
    2022
  • 资助金额:
    $ 59.94万
  • 项目类别:
mRNA Delivery of a Panel of Single-Domain Antibodies for Combinatorial Deciphering of Therapeutic Targets for Covid-19 Related Cytokine Release Syndrome
一组单域抗体的 mRNA 递送,用于组合破译 Covid-19 相关细胞因子释放综合征的治疗靶点
  • 批准号:
    10383635
  • 财政年份:
    2022
  • 资助金额:
    $ 59.94万
  • 项目类别:
Defining the role of SINE retrotransposons and inflammasome activation in Alzheimer's disease
定义 SINE 逆转录转座子和炎症小体激活在阿尔茨海默病中的作用
  • 批准号:
    10517678
  • 财政年份:
    2022
  • 资助金额:
    $ 59.94万
  • 项目类别:
OUTLAST - A First Multiple-Dose Efficacy Study of IXT-m200, an anti-METH Monoclonal Antibody, in Patients with METH Use Disorder
OUTLAST - IXT-m200(一种抗冰毒单克隆抗体)在冰毒使用障碍患者中的​​首次多剂量疗效研究
  • 批准号:
    10686245
  • 财政年份:
    2021
  • 资助金额:
    $ 59.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了