SHF: Small: Rigorous Synthesis and Verification of Decisions Using Data-Driven Models

SHF:小型:使用数据驱动模型对决策进行严格的综合和验证

基本信息

  • 批准号:
    1815983
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

This project develops data-driven mathematical models to synthesize and verify control/decision-support algorithms for autonomous systems that operate under a variety of environments, involving various users. The research investigates the inference of models from data and reasoning over these models to provide guarantees for the overall system. The project focuses on artificial pancreas systems that deliver insulin to people with type-1 diabetes. Such systems must adapt to the specific physiological and behavioral patterns for each individual user. To this end, the project infers data-driven models for specific individuals to verify and synthesize personalized control/decision support algorithms. Additionally, on-board data collected from unmanned aerial vehicles under windy conditions are used to check for collision avoidance in real-time. The project reaches out to high school students through workshops on data analysis, and to the general public through curated wikipedia articles that explain the principles underlying artificial pancreas systemsThe project investigates systematic inference of data-driven models with uncertainty quantification and model selection. The resulting models are incorporated into verification approaches such as model checking and invariant synthesis to provide probabilistic correctness guarantees for key temporal properties. The evaluation is carried out using clinical trial datasets for artificial pancreas systems and on-board flight data for ground and unmanned aerial vehicles. The project formally defines, identifies and eliminates harmful biases in the data, to assure the integrity of the verification and synthesis results. The project develop assurance cases that support the use of data-driven models in the formal verification and synthesis process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发数据驱动的数学模型,以综合和验证在各种环境下运行、涉及各种用户的自主系统的控制/决策支持算法。研究从数据中推断出模型,并对模型进行推理,为整个系统提供保证。 该项目的重点是为 1 型糖尿病患者提供胰岛素的人工胰腺系统。此类系统必须适应每个用户的特定生理和行为模式。为此,该项目为特定个体推断数据驱动模型,以验证和综合个性化控制/决策支持算法。此外,在大风条件下从无人机收集的机载数据可用于实时检查防撞情况。 该项目通过数据分析研讨会接触高中生,并通过精心策划的维基百科文章接触公众,这些文章解释了人工胰腺系统的原理。该项目研究了具有不确定性量化和模型选择的数据驱动模型的系统推理。所得模型被纳入模型检查和不变综合等验证方法中,为关键时间属性提供概率正确性保证。该评估是使用人工胰腺系统的临床试验数据集以及地面和无人机的机载飞行数据进行的。该项目正式定义、识别和消除数据中的有害偏差,以确保验证和综合结果的完整性。 该项目开发了保证案例,支持在正式验证和综合过程中使用数据驱动模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predictive Runtime Monitoring for Linear Stochastic Systems and Applications to Geofence Enforcement for UAVs
线性随机系统的预测运行时监控及其在无人机地理围栏执法中的应用
  • DOI:
    10.1007/978-3-030-32079-9_20
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoon, Hansol;Chou, Yi;Chen, Xin;Frew, Eric;Sankaranarayanan, Sriram
  • 通讯作者:
    Sankaranarayanan, Sriram
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION
  • DOI:
    10.1137/20m1343166
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Messenger, Daniel A.;Bortz, David M.
  • 通讯作者:
    Bortz, David M.
Learning anisotropic interaction rules from individual trajectories in a heterogeneous cellular population
Factory-Calibrated Continuous Glucose Monitoring: How and Why It Works, and the Dangers of Reuse Beyond Approved Duration of Wear
  • DOI:
    10.1089/dia.2018.0401
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Forlenza, Gregory P.;Kushner, Taisa;Sankaranarayanan, Sriram
  • 通讯作者:
    Sankaranarayanan, Sriram
Online Weak-form Sparse Identification of Partial Differential Equations
  • DOI:
    10.48550/arxiv.2203.03979
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Messenger;E. Dall’Anese;D. Bortz
  • 通讯作者:
    D. Messenger;E. Dall’Anese;D. Bortz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Sankaranarayanan其他文献

Worst-Case Convergence Time of ML Algorithms via Extreme Value Theory
基于极值理论的 ML 算法的最坏情况收敛时间
Large Language Models Enable Automated Formative Feedback in Human-Robot Interaction Tasks
大型语言模型可在人机交互任务中实现自动形成反馈
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Jensen;Sriram Sankaranarayanan;Bradley Hayes
  • 通讯作者:
    Bradley Hayes
A bit too precise? Verification of quantized digital filters
是不是有点太精确了?
Algorithms for Identifying Flagged and Guarded Linear Systems
识别标记和保护线性系统的算法
Automated Assessment and Adaptive Multimodal Formative Feedback Improves Psychomotor Skills Training Outcomes in Quadrotor Teleoperation
自动评估和自适应多模态形成反馈可改善四旋翼飞行器远程操作的精神运动技能训练成果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Jensen;Sriram Sankaranarayanan;Bradley Hayes
  • 通讯作者:
    Bradley Hayes

Sriram Sankaranarayanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Sankaranarayanan', 18)}}的其他基金

Conference: Workshop for Rigorous and Reproducible Scientific Reasoning
会议:严谨且可重复的科学推理研讨会
  • 批准号:
    2336329
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Learning and Verifying Conformant Data-Driven Models for Cyber-Physical Systems
CPS:媒介:协作研究:学习和验证网络物理系统的一致数据驱动模型
  • 批准号:
    1932189
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
SHF: Small: Bilinear Constraint Solving and Optimization for Program Verification and Synthesis Problems
SHF:小型:程序验证和综合问题的双线性约束求解和优化
  • 批准号:
    1527075
  • 财政年份:
    2015
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: In-Silico Functional Verification of Artificial Pancreas Control Algorithms.
CPS:协同作用:协作研究:人工胰腺控制算法的计算机功能验证。
  • 批准号:
    1446900
  • 财政年份:
    2014
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Gray Box Testing of Complex Cyber-Physical Systems Using Optimization and Optimal Control Techniques
CSR:小型:协作研究:使用优化和最优控制技术对复杂信息物理系统进行灰盒测试
  • 批准号:
    1319457
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
SHF: Small: Reasoning Rigorously About Probabilistic Programs
SHF:小:对概率程序进行严格推理
  • 批准号:
    1320069
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CAREER: Automatic Analysis of Cyber Physical Systems: Bridging the Gap between Research and Industrial Practice
职业:网络物理系统的自动分析:弥合研究与工业实践之间的差距
  • 批准号:
    0953941
  • 财政年份:
    2010
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
CPS: Small: Formal Analysis of Man-Machine Interfaces to Cyber-Physical Systems
CPS:小型:网络物理系统人机接口的形式分析
  • 批准号:
    1035845
  • 财政年份:
    2010
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
  • 批准号:
    1016994
  • 财政年份:
    2010
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

AF: Small: Building a rich and rigorous theory of decision tree learning
AF:小:构建丰富而严谨的决策树学习理论
  • 批准号:
    2224246
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: A Robust Framework with Rigorous Semantics and Security Guarantees for Election-Day Voter Check-in
SaTC:核心:小型:具有严格语义和安全保证的强大框架,用于选举日选民签到
  • 批准号:
    2131538
  • 财政年份:
    2021
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
  • 批准号:
    1908281
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
  • 批准号:
    1908384
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
  • 批准号:
    1910100
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了