Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding

协作研究:使用表示和编码对现实世界数据进行近似计算

基本信息

  • 批准号:
    1848810
  • 负责人:
  • 金额:
    $ 14.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The diminishing benefits from traditional transistor scaling has coincided with an overwhelming increase in the rate of data generation. Expert analyses show that in 2011, the amount of generated data surpassed 1.8 zeta bytes and will increase by a factor of 50 until 2020. To overcome these challenges, both the semiconductor industry and the research community are exploring new avenues in computing. Two of the promising approaches are acceleration and approximation. Among accelerators, Graphic Processing Units provide significant compute capabilities. Graphic Processing Units, originally designed to accelerate graphics functions, now are processing large amounts of real-world data that are collected from sensors, radar, environment, financial markets, and medical devices. As Graphic Processing Units play a major role in accelerating many classes of applications, improving their performance and energy efficiency has become imperative. This project leverages the fact that many applications that benefit from Graphic Processing Units are amenable to imprecise computation. This characteristic provides an opportunity to devise approximation techniques that trade small losses in the output quality for significant gains in performance and energy efficiency. This project aims to exploit this opportunity and develop a comprehensive framework for approximation in Graphic Processing Units along with effective quality control mechanisms based on coding theory. Energy efficiency is arguably the biggest challenge of the computing industry. To maintain the nation's economic leadership in this industry, it is vital to develop solutions, such as this project, that address the fundamental challenges of energy-efficient computing. The computing industry has reached an era in which many of the innovative techniques, such as this work, crosses the boundary of multiple disciplines, including computer architecture, information theory, and signal processing. Thus, it is imperative to educate a workforce that not only deeply understands multiple disciples, but also can innovate across their boundaries. This project provides a foundation for such education and research. This project will produce benchmarks, tools and general infrastructure. These artifacts will be made publicly available and will be integrated in the Georgia Tech and Harvard curricula. To transfer these technologies, the principle investigators have established close contacts with several companies. Besides the customary routes academics use to disseminate results, the principle investigator will continue organizing workshops on approximate computing. The principle investigator is also coauthoring a book on approximate computing, which will include results from this project. The investigators are committed to diversity and inclusion of undergraduate, underrepresented, and high school students and are currently mentoring students from all groups that will continue throughout this project. This project will first develop an accelerated architecture for Graphic Processing Units, which leverage an approximate algorithmic transformation for faster and more energy efficient execution. The core idea is to use neural models to learn how a region of code behaves and replace the region with a hardware accelerator that is tightly integrated within the many cores of the Graphic Processing Units. Second, inspired by Shannon's work and the success of random codes in providing reliable communication over noisy channels, this work will devise quality control solutions that utilize coding techniques to reduce the imprecision. The code is implicit in a sense that whenever an approximate output must be improved, its correlation with available exact outputs is exploited for constructing and decoding the code. Third, the project will study mechanisms that leverage the inherent similarity and predictability in the real-world data to address the memory bottlenecks in Graphic Processing Units. The main idea is to predict the values of a data load operation when it misses in the local on-chip cache and continue the computation without waiting for the long-latency response from the off-chip memory. To perform effective prediction, this project will develop multi-regime adaptive nonlinear time-varying dynamical models for the input data using our new theories of model matching.
传统晶体管缩放带来的好处逐渐减少,而数据生成率却急剧增加。专家分析表明,2011 年生成的数据量超过 1.8 zeta 字节,到 2020 年将增加 50 倍。为了克服这些挑战,半导体行业和研究界都在探索计算的新途径。两种有希望的方法是加速和近似。在加速器中,图形处理单元提供了重要的计算能力。图形处理单元最初是为了加速图形功能而设计的,现在正在处理从传感器、雷达、环境、金融市场和医疗设备收集的大量现实世界数据。由于图形处理单元在加速多种应用程序方面发挥着重要作用,因此提高其性能和能源效率已势在必行。该项目利用了这样一个事实:许多受益于图形处理单元的应用程序都适合不精确的计算。这一特性提供了设计近似技术的机会,该技术可以通过输出质量的微小损失来换取性能和能源效率的显着提升。该项目旨在利用这一机会,开发一个用于图形处理单元近似的综合框架以及基于编码理论的有效质量控制机制。能源效率可以说是计算行业面临的最大挑战。为了保持国家在该行业的经济领先地位,开发解决方案(例如本项目)来解决节能计算的基本挑战至关重要。计算行业已经进入这样一个时代,许多创新技术(例如这项工作)跨越了多个学科的边界,包括计算机体系结构、信息论和信号处理。因此,必须培养一支不仅能深刻理解多个弟子,而且能够跨越界限进行创新的劳动力队伍。该项目为此类教育和研究奠定了基础。该项目将产生基准、工具和通用基础设施。这些文物将公开提供,并将整合到佐治亚理工学院和哈佛大学的课程中。为了转让这些技术,主要研究人员与多家公司建立了密切联系。除了学术界用来传播结果的惯用途径外,首席研究员将继续组织近似计算研讨会。首席研究员还与人合着了一本关于近似计算的书,其中将包括该项目的结果。研究人员致力于本科生、代表性不足的学生和高中生的多样性和包容性,目前正在指导来自所有群体的学生,这些学生将在整个项目中继续下去。该项目将首先开发图形处理单元的加速架构,该架构利用近似算法转换来实现更快、更节能的执行。核心思想是使用神经模型来学习代码区域的行为方式,并用紧密集成在图形处理单元的许多核心内的硬件加速器替换该区域。其次,受到香农的工作和随机码在噪声信道上提供可靠通信方面的成功的启发,这项工作将设计利用编码技术来减少不精确性的质量控制解决方案。从某种意义上说,代码是隐含的,每当必须改进近似输出时,就会利用其与可用精确输出的相关性来构建和解码代码。第三,该项目将研究利用现实世界数据固有的相似性和可预测性来解决图形处理单元中的内存瓶颈的机制。主要思想是当数据加载操作在本地片上缓存中丢失时预测数据加载操作的值,并继续计算而不等待来自片外存储器的长延迟响应。为了进行有效的预测,该项目将使用我们的新模型匹配理论为输入数据开发多状态自适应非线性时变动力学模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vahid Tarokh其他文献

REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances
REFORMA:通过自适应对手为干扰下飞行的无人机提供强大的强化学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao;Haocheng Meng;Shaocheng Luo;Juncheng Dong;Vahid Tarokh;Miroslav Pajic
  • 通讯作者:
    Miroslav Pajic
Training Sequence Design for Wireless Collaborative Communication Systems in Frequency-Selective Fading
频率选择性衰落无线协作通信系统的训练序列设计
P RUNING D EEP N EURAL N ETWORKS FROM A S PAR - SITY P ERSPECTIVE
从 A SPAR 的角度修剪深度神经网络
Off-Policy Evaluation for Human Feedback
人类反馈的离线策略评估
  • DOI:
    10.48550/arxiv.2310.07123
  • 发表时间:
    2023-10-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qitong Gao;Ge Gao;Juncheng Dong;Vahid Tarokh;Min Chi;Miroslav Pajic
  • 通讯作者:
    Miroslav Pajic
Steering Decision Transformers via Temporal Difference Learning
通过时间差异学习引导决策转换器
  • DOI:
    10.48550/arxiv.2306.06871
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao;A. Bozkurt;Juncheng Dong;Qitong Gao;Vahid Tarokh;Miroslav Pajic;Alper Kamil
  • 通讯作者:
    Alper Kamil

Vahid Tarokh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vahid Tarokh', 18)}}的其他基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Dynamic Spectrum Sharing via Stochastic Optimization
合作研究:SWIFT:通过随机优化实现动态频谱共享
  • 批准号:
    2229468
  • 财政年份:
    2022
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Dynamic Spectrum Sharing via Stochastic Optimization
合作研究:SWIFT:通过随机优化实现动态频谱共享
  • 批准号:
    2229468
  • 财政年份:
    2022
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
  • 批准号:
    1609605
  • 财政年份:
    2016
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
EAGER: Limited Communications Demand Control in Power Grid
EAGER:电网中有限的通信需求控制
  • 批准号:
    1548204
  • 财政年份:
    2015
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Low Peak to Average Power Multicarrier Signals via Coding: Fundamental Limits and Algorithms
协作研究:通过编码实现低峰值平均功率多载波信号:基本限制和算法
  • 批准号:
    0728572
  • 财政年份:
    2007
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0240625
  • 财政年份:
    2002
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Continuing Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0139398
  • 财政年份:
    2001
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

马尔可夫近似下超冷费米气体的耗散动力学研究
  • 批准号:
    12304290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非对称旅行商相关问题的近似算法研究
  • 批准号:
    12301414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非谐近似下三元富氢高温超导体结构和超导电性的研究
  • 批准号:
    12304013
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多波长偏振扫描激光雷达和物理光学近似的卷云冰晶粒子取向规律研究
  • 批准号:
    42375122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
格值有穷自动机的近似极小化方法研究
  • 批准号:
    12301596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2344585
  • 财政年份:
    2023
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323112
  • 财政年份:
    2023
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313040
  • 财政年份:
    2023
  • 资助金额:
    $ 14.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了