CPS: Medium: Collaborative Research: Learning and Verifying Conformant Data-Driven Models for Cyber-Physical Systems
CPS:媒介:协作研究:学习和验证网络物理系统的一致数据驱动模型
基本信息
- 批准号:1932189
- 负责人:
- 金额:$ 59.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates fundamental techniques for building mathematical models that can be safely used to make trustworthy predictions and control decisions. Mathematical models form the foundation for modern Cyber-Physical Systems (CPS). Examples include vehicle models that predict how a car will move when brakes are applied, or physiological models that predict how the blood glucose levels change in a patient with type-1 diabetes when insulin is administered. The success of machine learning tools has yielded data-driven models such as neural networks. However, depending on how data is collected and the models are learned, it is possible to obtain models that violate fundamental physical, chemical, or physiological facts that can potentially threaten life and property. The approach of the project is to expose these model flaws through advanced analysis. The project seeks to broaden participation in computing through mentoring activities that will encourage undergraduate women and members of underrepresented minority groups to consider a career in research.The research combines falsification methods for exposing failure to conform with verification approaches for rigorously proving conformance. Furthermore, approaches for learning models of dynamical systems from data and imposing core cyber-physical domain knowledge are under investigation. The project is applying these data-driven models with conformance guarantees to the design of safe controllers for autonomous vehicles, models of human insulin glucose regulation and robotic swarms. The effort is advancing CPS education by creating a framework for distance education focused on CPS. The researchers are developing a series of low cost hardware testbeds and self-paced learning tasks that will expose students to the process of building highly reliable and safety critical CPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究构建数学模型的基本技术,这些模型可安全地用于做出可信的预测和控制决策。数学模型构成了现代网络物理系统(CPS)的基础。例如,预测汽车在刹车时将如何移动的车辆模型,或者预测 1 型糖尿病患者在注射胰岛素时血糖水平如何变化的生理模型。机器学习工具的成功产生了数据驱动的模型,例如神经网络。然而,根据数据的收集方式和模型的学习方式,有可能获得违反基本物理、化学或生理事实的模型,这些事实可能会威胁生命和财产。该项目的方法是通过高级分析揭示这些模型缺陷。该项目旨在通过指导活动扩大对计算的参与,鼓励本科女性和代表性不足的少数群体成员考虑从事研究工作。该研究结合了揭露不符合验证方法的证伪方法和严格证明一致性的验证方法。此外,从数据中学习动力系统模型和施加核心网络物理领域知识的方法正在研究中。该项目正在将这些具有一致性保证的数据驱动模型应用于自动驾驶汽车安全控制器、人类胰岛素葡萄糖调节模型和机器人群的设计。这项工作正在通过创建一个以 CPS 为重点的远程教育框架来推进 CPS 教育。研究人员正在开发一系列低成本硬件测试台和自定进度的学习任务,让学生了解构建高度可靠且安全关键的 CPS 的过程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Robot Learning in Assistive Devices through Neural Network Repair
- DOI:10.48550/arxiv.2303.04431
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:K. Majd;Geoffrey Clark;Tanmay Khandait;Siyu Zhou;S. Sankaranarayanan;Georgios Fainekos;H. B. Amor
- 通讯作者:K. Majd;Geoffrey Clark;Tanmay Khandait;Siyu Zhou;S. Sankaranarayanan;Georgios Fainekos;H. B. Amor
Counterexample-guided computation of polyhedral Lyapunov functions for piecewise linear systems
- DOI:10.1016/j.automatica.2023.111165
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Guillaume O. Berger;S. Sankaranarayanan
- 通讯作者:Guillaume O. Berger;S. Sankaranarayanan
Training Neural Network Controllers Using Control Barrier Functions in the Presence of Disturbances
- DOI:10.1109/itsc45102.2020.9294485
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Shakiba Yaghoubi;Georgios Fainekos;S. Sankaranarayanan
- 通讯作者:Shakiba Yaghoubi;Georgios Fainekos;S. Sankaranarayanan
Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models
- DOI:10.1089/dia.2020.0061
- 发表时间:2020-10-13
- 期刊:
- 影响因子:5.4
- 作者:Kushner, Taisa;Breton, Marc D.;Sankaranarayanan, Sriram
- 通讯作者:Sankaranarayanan, Sriram
Static analysis of ReLU neural networks with tropical polyhedra
- DOI:10.1007/978-3-030-88806-0_8
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:É. Goubault;S'ebastien Palumby;S. Putot;Louis Rustenholz;S. Sankaranarayanan
- 通讯作者:É. Goubault;S'ebastien Palumby;S. Putot;Louis Rustenholz;S. Sankaranarayanan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sriram Sankaranarayanan其他文献
Worst-Case Convergence Time of ML Algorithms via Extreme Value Theory
基于极值理论的 ML 算法的最坏情况收敛时间
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Saeid Tizpaz;Sriram Sankaranarayanan - 通讯作者:
Sriram Sankaranarayanan
Large Language Models Enable Automated Formative Feedback in Human-Robot Interaction Tasks
大型语言模型可在人机交互任务中实现自动形成反馈
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Jensen;Sriram Sankaranarayanan;Bradley Hayes - 通讯作者:
Bradley Hayes
A bit too precise? Verification of quantized digital filters
是不是有点太精确了?
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Arlen Cox;Sriram Sankaranarayanan;Bor - 通讯作者:
Bor
Algorithms for Identifying Flagged and Guarded Linear Systems
识别标记和保护线性系统的算法
- DOI:
10.1145/3641513.3650140 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guillaume O. Berger;M. Narasimhamurthy;Sriram Sankaranarayanan - 通讯作者:
Sriram Sankaranarayanan
Automated Assessment and Adaptive Multimodal Formative Feedback Improves Psychomotor Skills Training Outcomes in Quadrotor Teleoperation
自动评估和自适应多模态形成反馈可改善四旋翼飞行器远程操作的精神运动技能训练成果
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Jensen;Sriram Sankaranarayanan;Bradley Hayes - 通讯作者:
Bradley Hayes
Sriram Sankaranarayanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sriram Sankaranarayanan', 18)}}的其他基金
Conference: Workshop for Rigorous and Reproducible Scientific Reasoning
会议:严谨且可重复的科学推理研讨会
- 批准号:
2336329 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
SHF: Small: Rigorous Synthesis and Verification of Decisions Using Data-Driven Models
SHF:小型:使用数据驱动模型对决策进行严格的综合和验证
- 批准号:
1815983 - 财政年份:2018
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
SHF: Small: Bilinear Constraint Solving and Optimization for Program Verification and Synthesis Problems
SHF:小型:程序验证和综合问题的双线性约束求解和优化
- 批准号:
1527075 - 财政年份:2015
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: In-Silico Functional Verification of Artificial Pancreas Control Algorithms.
CPS:协同作用:协作研究:人工胰腺控制算法的计算机功能验证。
- 批准号:
1446900 - 财政年份:2014
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Gray Box Testing of Complex Cyber-Physical Systems Using Optimization and Optimal Control Techniques
CSR:小型:协作研究:使用优化和最优控制技术对复杂信息物理系统进行灰盒测试
- 批准号:
1319457 - 财政年份:2013
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
SHF: Small: Reasoning Rigorously About Probabilistic Programs
SHF:小:对概率程序进行严格推理
- 批准号:
1320069 - 财政年份:2013
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
CAREER: Automatic Analysis of Cyber Physical Systems: Bridging the Gap between Research and Industrial Practice
职业:网络物理系统的自动分析:弥合研究与工业实践之间的差距
- 批准号:
0953941 - 财政年份:2010
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
CPS: Small: Formal Analysis of Man-Machine Interfaces to Cyber-Physical Systems
CPS:小型:网络物理系统人机接口的形式分析
- 批准号:
1035845 - 财政年份:2010
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
- 批准号:
1016994 - 财政年份:2010
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant