喵ID:ab5AGX免责声明

Learning anisotropic interaction rules from individual trajectories in a heterogeneous cellular population

基本信息

DOI:
10.1098/rsif.2022.0412
发表时间:
2022-10-12
影响因子:
3.9
通讯作者:
中科院分区:
综合性期刊2区
文献类型:
--
作者: 研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Interacting particle system (IPS) models have proven to be highly successful for describing the spatial movement of organisms. However, it is challenging to infer the interaction rules directly from data. In the field of equation discovery, the weak-form sparse identification of nonlinear dynamics (WSINDy) methodology has been shown to be computationally efficient for identifying the governing equations of complex systems from noisy data. Motivated by the success of IPS models to describe the spatial movement of organisms, we develop WSINDy for the second-order IPS to learn equations for communities of cells. Our approach learns the directional interaction rules for each individual cell that in aggregate govern the dynamics of a heterogeneous population of migrating cells. To sort a cell according to the active classes present in its model, we also develop a novel ad hoc classification scheme (which accounts for the fact that some cells do not have enough evidence to accurately infer a model). Aggregated models are then constructed hierarchically to simultaneously identify different species of cells present in the population and determine best-fit models for each species. We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.
相互作用粒子系统(IPS)模型已被证明在描述生物体的空间运动方面非常成功。然而,直接从数据推断相互作用规则具有挑战性。在方程发现领域,非线性动力学的弱形式稀疏识别(WSINDy)方法已被证明在从含噪数据中识别复杂系统的控制方程方面具有计算效率。受IPS模型在描述生物体空间运动方面取得成功的启发,我们针对二阶IPS开发了WSINDy,用于学习细胞群落的方程。我们的方法学习每个单个细胞的定向相互作用规则,这些规则总体上控制着迁移细胞异质群体的动态。为了根据细胞模型中存在的活跃类别对细胞进行分类,我们还开发了一种新的特定分类方案(考虑到一些细胞没有足够证据来准确推断模型这一事实)。然后分层构建聚合模型,以同时识别群体中存在的不同细胞种类,并为每个种类确定最佳拟合模型。我们在一些受常见细胞迁移实验启发的测试场景中展示了该方法的效率和熟练度。
参考文献(0)
被引文献(0)
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study
DOI:
10.1073/pnas.0711437105
发表时间:
2008-01-29
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Ballerini, M.;Calbibbo, N.;Zdravkovic, V.
通讯作者:
Zdravkovic, V.
Learning the dynamics of cell-cell interactions in confined cell migration.
DOI:
10.1073/pnas.2016602118
发表时间:
2021-02-16
期刊:
Proceedings of the National Academy of Sciences of the United States of America
影响因子:
11.1
作者:
Brückner DB;Arlt N;Fink A;Ronceray P;Rädler JO;Broedersz CP
通讯作者:
Broedersz CP
Complex spatial group patterns result from different animal communication mechanisms
DOI:
10.1073/pnas.0611483104
发表时间:
2007-04-24
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Eftimie, R.;de Vries, G.;Lewis, M. A.
通讯作者:
Lewis, M. A.
Modelling directional guidance and motility regulation in cell migration
DOI:
10.1007/s11538-005-9028-x
发表时间:
2006-01-01
期刊:
BULLETIN OF MATHEMATICAL BIOLOGY
影响因子:
3.5
作者:
Cai, AQ;Landman, KA;Hughes, BD
通讯作者:
Hughes, BD
Particle, kinetic, and hydrodynamic models of swarming
DOI:
10.1007/978-0-8176-4946-3_12
发表时间:
2010-01-01
期刊:
MATHEMATICAL MODELING OF COLLECTIVE BEHAVIOR IN SOCIO-ECONOMIC AND LIFE SCIENCES
影响因子:
0
作者:
Carrillo, Jose A.;Fornasier, Massimo;Vecil, Francesco
通讯作者:
Vecil, Francesco

数据更新时间:{{ references.updateTime }}

通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓