Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
基本信息
- 批准号:1620194
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project proposes to develop a novel mathematical modeling of micro- and nano-fluidics, which intersects engineering, biochemistry, nanotechnology, and biotechnology. The study of micro-and nano-fluidics has great potential to revolutionize the methods in biological and chemical applications, which has wide applications to the design of systems in which low volumes of fluids are processed to achieve multiplexing, automation, and high-throughput screening. Micro- and nano-fluidics is used widely in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. The project will also provide advanced interdisciplinary training to graduate and undergraduate students. All of these activities will have broad and long-lasting impacts and contribute directly to the intellectual infrastructure of the nation.Nonlocal models such as fractional partial differential equations (FPDEs), fractional Laplacian, and peridynamics are emerging as powerful tools for modeling challenging phenomena including anomalous transport and long-range time memory or spatial interactions in a wide range of fields such as biology, physics, chemistry, finance, engineering, and solute transport in groundwater. These models provide more appropriate description of many important problems in applications than integer-order PDE models do. Two of the main reasons that nonlocal models have not been used extensively so far are as follows: (1) They generate numerical schemes with dense matrices and solutions with strongly local behavior, which are significantly more expensive to solve numerically than traditional integer-order PDE models. A naive simulation of a three-dimensional linear problem with a moderate number of grid points may take state of the art supercomputers hundreds of years to finish and so deemed unrealistic. (2) Nonlocal models introduce mathematical difficulties, which were not encountered in the context of integer-order PDEs. It is proposed to effectively address both points at this juncture. The fast numerical methods proposed herein will provide significant computational benefits for nonlocal models, and will facilitate their applications. Preliminary numerical experiments of a simple three-dimensional fractional PDE showed that the proposed method reduced the CPU time from 2 months and 25 days by a traditional method to 5.74 seconds and reduced storage significantly. The proposed mathematical and numerical analysis will provide a solid theoretical foundation for nonlocal models and related numerical approximations. The fast and accurate numerical methods and rigorous mathematical analysis results will be applied in the development of a novel mathematical modeling of micro- and nano-fluidics. The resulting mathematical model will be utilized in the study of micro- and nano-fluidics.
该项目提议开发一种新型的微纳米流体数学模型,它涉及工程学、生物化学、纳米技术和生物技术。微流体和纳米流体的研究具有彻底改变生物和化学应用方法的巨大潜力,在处理少量流体以实现多重、自动化和高通量筛选的系统设计中具有广泛的应用。微纳米流体广泛应用于喷墨打印头、DNA 芯片、芯片实验室技术、微推进和微热技术的开发。该项目还将为研究生和本科生提供先进的跨学科培训。所有这些活动都将产生广泛而持久的影响,并直接为国家的智力基础设施做出贡献。分数偏微分方程(FPDE)、分数拉普拉斯和近场动力学等非局部模型正在成为建模具有挑战性的现象的强大工具,包括生物学、物理、化学、金融、工程和地下水中溶质输运等广泛领域的异常输运和长程时间记忆或空间相互作用。与整数阶偏微分方程模型相比,这些模型可以更恰当地描述应用中的许多重要问题。迄今为止,非局部模型尚未广泛使用的两个主要原因如下:(1)它们生成具有密集矩阵的数值格式和具有强局部行为的解,这些数值求解的成本比传统的整数阶偏微分方程要昂贵得多模型。对具有适量网格点的三维线性问题的简单模拟可能需要最先进的超级计算机数百年才能完成,因此被认为是不现实的。 (2) 非局部模型引入了整数阶偏微分方程中不会遇到的数学困难。建议此时有效解决这两点。本文提出的快速数值方法将为非局部模型提供显着的计算优势,并将促进其应用。简单三维分数阶偏微分方程的初步数值实验表明,该方法将CPU时间从传统方法的2个月零25天减少到5.74秒,并显着减少了存储空间。所提出的数学和数值分析将为非局部模型和相关数值近似提供坚实的理论基础。快速准确的数值方法和严格的数学分析结果将应用于开发微纳米流体的新型数学模型。由此产生的数学模型将用于微流体和纳米流体的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Wang其他文献
Bleeding pattern difference between levonorgestrel intrauterine system and copper intrauterine devices inserted immediately post-abortion: a multicenter, prospective, observational cohort study in Chinese women
流产后立即置入左炔诺孕酮宫内节育器与铜质宫内节育器的出血模式差异:一项针对中国女性的多中心、前瞻性、观察性队列研究
- DOI:
10.1080/03007995.2017.1421919 - 发表时间:
2018 - 期刊:
- 影响因子:2.3
- 作者:
Xiaoning Chen;Qianxi Li;Xiao;J. Chen;Wen Lv;B. Shi;Hong Wang;Jianru Luo;Jian Li - 通讯作者:
Jian Li
Apoptosis induced by pneumolysin in human endothelial cells involves mitogen-activated protein kinase phosphorylation.
人内皮细胞中肺炎球菌溶血素诱导的细胞凋亡涉及丝裂原激活的蛋白激酶磷酸化。
- DOI:
10.3892/ijmm.2012.946 - 发表时间:
2012 - 期刊:
- 影响因子:5.4
- 作者:
Aie Zhou;Hong Wang;K. Lan;Xuemei Zhang;Wenchun Xu;Yibing Yin;Dairong Li;Jun Yuan;Yujuan He - 通讯作者:
Yujuan He
Quantum cosmology of the flat universe via closed real-time path integral
通过封闭实时路径积分的平坦宇宙的量子宇宙学
- DOI:
10.1140/epjc/s10052-022-11099-x - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hong Wang;Jin Wang - 通讯作者:
Jin Wang
Potential Renewable Bioenergy Production from Canadian Agriculture
加拿大农业潜在的可再生生物能源生产
- DOI:
10.3384/ecp110572485 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Tingting Liu;B. McConkey;Stephen Smith;B. Mcgregor;T. Huffman;S. Kulshreshtha;Hong Wang - 通讯作者:
Hong Wang
Metamorphic Heterojunction Bipolar Transistors
变质异质结双极晶体管
- DOI:
10.1201/b13724-9 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hong Wang - 通讯作者:
Hong Wang
Hong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Wang', 18)}}的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:
1954422 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:
2000988 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:
1664708 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:
1216923 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
部分双曲微分同胚中的拓扑与度量性质的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
部分双曲系统的拓扑与遍历论性质
- 批准号:11871120
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
部分双曲系统的持续传递性
- 批准号:11701015
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
- 批准号:61573217
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling of mantle evolution and geochemical tracers
地幔演化模拟和地球化学示踪剂
- 批准号:
22K14131 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of dynamic singularities in parabolic partial differential equations
抛物型偏微分方程的动态奇点分析
- 批准号:
22H01131 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric analysis of partial differential equations and inverse problems
偏微分方程和反问题的几何分析
- 批准号:
22K03381 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)