Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
基本信息
- 批准号:1620194
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project proposes to develop a novel mathematical modeling of micro- and nano-fluidics, which intersects engineering, biochemistry, nanotechnology, and biotechnology. The study of micro-and nano-fluidics has great potential to revolutionize the methods in biological and chemical applications, which has wide applications to the design of systems in which low volumes of fluids are processed to achieve multiplexing, automation, and high-throughput screening. Micro- and nano-fluidics is used widely in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. The project will also provide advanced interdisciplinary training to graduate and undergraduate students. All of these activities will have broad and long-lasting impacts and contribute directly to the intellectual infrastructure of the nation.Nonlocal models such as fractional partial differential equations (FPDEs), fractional Laplacian, and peridynamics are emerging as powerful tools for modeling challenging phenomena including anomalous transport and long-range time memory or spatial interactions in a wide range of fields such as biology, physics, chemistry, finance, engineering, and solute transport in groundwater. These models provide more appropriate description of many important problems in applications than integer-order PDE models do. Two of the main reasons that nonlocal models have not been used extensively so far are as follows: (1) They generate numerical schemes with dense matrices and solutions with strongly local behavior, which are significantly more expensive to solve numerically than traditional integer-order PDE models. A naive simulation of a three-dimensional linear problem with a moderate number of grid points may take state of the art supercomputers hundreds of years to finish and so deemed unrealistic. (2) Nonlocal models introduce mathematical difficulties, which were not encountered in the context of integer-order PDEs. It is proposed to effectively address both points at this juncture. The fast numerical methods proposed herein will provide significant computational benefits for nonlocal models, and will facilitate their applications. Preliminary numerical experiments of a simple three-dimensional fractional PDE showed that the proposed method reduced the CPU time from 2 months and 25 days by a traditional method to 5.74 seconds and reduced storage significantly. The proposed mathematical and numerical analysis will provide a solid theoretical foundation for nonlocal models and related numerical approximations. The fast and accurate numerical methods and rigorous mathematical analysis results will be applied in the development of a novel mathematical modeling of micro- and nano-fluidics. The resulting mathematical model will be utilized in the study of micro- and nano-fluidics.
该项目提议开发一种新型的微流体和纳米流体学数学建模,该模型与工程,生物化学,纳米技术和生物技术相交。对微荧光学的研究具有巨大的潜力,可以彻底改变生物和化学应用中的方法,这些方法在设计的系统设计中广泛应用,在这些系统的设计中,处理了低体积的流体以实现多重,自动化和高通量筛选。微流体和纳米流体学被广泛用于喷墨打印头,DNA芯片,芯片上实验室技术,微螺旋杆和微型技术技术的开发中。该项目还将为研究生和本科生提供高级跨学科培训。所有这些活动都将产生广泛而持久的影响,并直接为国家的智力基础设施做出贡献。诸如部分偏微分方程(FPDES),诸如部分偏微分方程(FPDES),laplacian和Peridynelanic等单位模型成为了在包括型和长期范围的范围内部范围内的范围内部互动,以构建型号的范围,并成为有力的工具地下水的化学,金融,工程和溶质运输。与整数PDE模型相比,这些模型对应用程序中许多重要问题的描述更为适当。到目前为止,非局部模型尚未广泛使用的两个主要原因如下:(1)它们生成具有密集矩阵和具有强烈局部行为的密集矩阵和解决方案的数值方案,与传统的整数PDE模型相比,在数字上求解的昂贵得多。对三维线性问题的幼稚模拟具有中等数量的网格点可能需要数百年的最高计算机才能完成,因此被认为是不现实的。 (2)非局部模型引入了数学困难,在整数阶PDE的背景下未遇到这些困难。建议在此关头有效解决这两个要点。本文提出的快速数值方法将为非本地模型提供显着的计算益处,并将促进其应用。简单的三维分数PDE的初步数值实验表明,所提出的方法将CPU时间从2个月和25天的传统方法缩短为5.74秒,并大大降低了存储。所提出的数学和数值分析将为非本地模型和相关的数值近似值提供坚实的理论基础。快速准确的数值方法和严格的数学分析结果将应用于微型和纳米流体学的新型数学建模。所得的数学模型将用于微流体和纳米流体学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Wang其他文献
Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask
基于混合海藻酸钙/骨粉凝胶珠内封装的人 ADSC 的组织工程骨聚集体的制造和检测
- DOI:
10.1016/j.msec.2016.02.036 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kedong Song;Yanfei Yang;Lili Xu;Jiaxin Tian;Jiangli Fan;Zeren Jiao;Shihao Feng;Hong Wang;Yiwei Wang;Ling Wang;Tianqing Liu - 通讯作者:
Tianqing Liu
Impact of meteorological factors on the incidence of influenza in Beijing: A 35-year retrospective study based on Yunqi theory
气象因素对北京市流感发病的影响——基于云气理论的35年回顾性研究
- DOI:
10.1016/j.jtcms.2018.06.003 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hong Wang;Xuan Zhang;Zhili Gao;Ling Han;Zhongdi Liu;Long Yan;Mingyue Li;Juan He - 通讯作者:
Juan He
Consecutive Convolutional Activations for Scene Character Recognition
用于场景字符识别的连续卷积激活
- DOI:
10.1109/access.2018.2848930 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Zhong Zhang;Hong Wang;Shuang Liu;Baihua Xiao - 通讯作者:
Baihua Xiao
Weighted multi-scale limited penetrable visibility graph for exploring atrial fibrillation rhythm
用于探索心房颤动节律的加权多尺度有限可穿透可见度图
- DOI:
10.1016/j.sigpro.2021.108288 - 发表时间:
2021-12 - 期刊:
- 影响因子:4.4
- 作者:
Wei Li;Hong Wang;Luhe Zhuang;Shu Han;Hui Zhang;Jihua Wang - 通讯作者:
Jihua Wang
Carbon-Encapsulated Tube-Wire Co3O4/MnO2 Heterostructure Nanofibers as Anode Material for Sodium-Ion Batteries
碳包管线材Co3O4/MnO2异质结构纳米纤维作为钠离子电池负极材料
- DOI:
10.1002/ppsc.201800138 - 发表时间:
2018 - 期刊:
- 影响因子:2.7
- 作者:
Wenming Zhang;Ziwei Yue;Wenfang Miao;Sichen Liu;Chaochao Fu;Ling Li;Zisheng Zhang;Hong Wang - 通讯作者:
Hong Wang
Hong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Wang', 18)}}的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:
1954422 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:
2000988 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:
1664708 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:
1216923 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
部分双曲微分同胚中的拓扑与度量性质的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
发展型偏微分方程组中基于部分观测数据的系数辨识问题
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
部分双曲系统的拓扑与遍历论性质
- 批准号:11871120
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
部分双曲系统的持续传递性
- 批准号:11701015
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
- 批准号:61573217
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling of mantle evolution and geochemical tracers
地幔演化模拟和地球化学示踪剂
- 批准号:
22K14131 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of dynamic singularities in parabolic partial differential equations
抛物型偏微分方程的动态奇点分析
- 批准号:
22H01131 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric analysis of partial differential equations and inverse problems
偏微分方程和反问题的几何分析
- 批准号:
22K03381 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)