CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
基本信息
- 批准号:2238818
- 负责人:
- 金额:$ 55.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project involves research at the interface of Fourier analysis and geometric measure theory. Fourier analysis studies the relation between a function and its Fourier transform. The Fourier transform of a function, in rough terms, represents the function via a superposition of frequencies. Geometric measure theory studies the geometric properties of sets and measures under transformations. Fractal sets, or sets with highly irregular geometry, are of particular interest in this regard. Recently, the connection between Fourier analysis and geometric measure theory has led to substantial progress in both fields. This project explores the interaction between these two fields, along with possible applications to other fields such as dynamics and number theory. The project also supports workshops for graduate students and early-career mathematicians: these events will promote mathematical expertise within the indicated research areas, will contribute to the professional training of participants, and will foster new research collaborations.The project combines work in restriction theory (within Fourier analysis) and the theory of projections (within geometric measure theory). One component of the planned research involves the study of the mass of a function, with Fourier transform supported on the sphere, on a fractal set. Another component investigates the dimensions of fractal sets under certain linear or nonlinear maps parametrized by curved manifolds. A final component concerns the Kakeya conjecture, which asks how large must a set be if it contains a unit line segment in every direction. These three components, while distinct, are highly interrelated, and progress in each area is anticipated to inform ongoing work in all of these areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及在傅立叶分析和几何测量理论的界面上进行的研究。傅立叶分析研究功能与其傅立叶变换之间的关系。函数的傅立叶变换以粗略的术语表示通过频率叠加的函数。几何测量理论研究了转换下的集合和措施的几何特性。在这方面,分形集或具有高度不规则的几何形状的集合特别感兴趣。最近,傅立叶分析与几何测量理论之间的联系已导致两个领域的实质进步。该项目探讨了这两个字段之间的相互作用,以及可能应用到其他字段(例如动态和数理论)。该项目还支持研究生和早期职业数学家的研讨会:这些事件将促进指定的研究领域内的数学专业知识,将为参与者的专业培训做出贡献,并将促进新的研究合作。计划研究的一个组成部分涉及对函数的质量进行研究,在分形集中,球体上支持傅立叶变换。 另一个组件研究了通过弯曲歧管参数参数的某些线性或非线性图下的分形集合的尺寸。最终的组件涉及Kakeya的猜想,该猜想询问是否包含各个方向的单元线段必须有多大。这三个组成部分虽然很明显,但高度相互关联,并且预计每个领域的进步都将为所有这些领域的正在进行的工作提供信息。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Hong Wang其他文献
Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask
基于混合海藻酸钙/骨粉凝胶珠内封装的人 ADSC 的组织工程骨聚集体的制造和检测
- DOI:10.1016/j.msec.2016.02.03610.1016/j.msec.2016.02.036
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:Kedong Song;Yanfei Yang;Lili Xu;Jiaxin Tian;Jiangli Fan;Zeren Jiao;Shihao Feng;Hong Wang;Yiwei Wang;Ling Wang;Tianqing LiuKedong Song;Yanfei Yang;Lili Xu;Jiaxin Tian;Jiangli Fan;Zeren Jiao;Shihao Feng;Hong Wang;Yiwei Wang;Ling Wang;Tianqing Liu
- 通讯作者:Tianqing LiuTianqing Liu
Impact of meteorological factors on the incidence of influenza in Beijing: A 35-year retrospective study based on Yunqi theory
气象因素对北京市流感发病的影响——基于云气理论的35年回顾性研究
- DOI:10.1016/j.jtcms.2018.06.00310.1016/j.jtcms.2018.06.003
- 发表时间:20182018
- 期刊:
- 影响因子:0
- 作者:Hong Wang;Xuan Zhang;Zhili Gao;Ling Han;Zhongdi Liu;Long Yan;Mingyue Li;Juan HeHong Wang;Xuan Zhang;Zhili Gao;Ling Han;Zhongdi Liu;Long Yan;Mingyue Li;Juan He
- 通讯作者:Juan HeJuan He
Consecutive Convolutional Activations for Scene Character Recognition
用于场景字符识别的连续卷积激活
- DOI:10.1109/access.2018.284893010.1109/access.2018.2848930
- 发表时间:20182018
- 期刊:
- 影响因子:3.9
- 作者:Zhong Zhang;Hong Wang;Shuang Liu;Baihua XiaoZhong Zhang;Hong Wang;Shuang Liu;Baihua Xiao
- 通讯作者:Baihua XiaoBaihua Xiao
Weighted multi-scale limited penetrable visibility graph for exploring atrial fibrillation rhythm
用于探索心房颤动节律的加权多尺度有限可穿透可见度图
- DOI:10.1016/j.sigpro.2021.10828810.1016/j.sigpro.2021.108288
- 发表时间:2021-122021-12
- 期刊:
- 影响因子:4.4
- 作者:Wei Li;Hong Wang;Luhe Zhuang;Shu Han;Hui Zhang;Jihua WangWei Li;Hong Wang;Luhe Zhuang;Shu Han;Hui Zhang;Jihua Wang
- 通讯作者:Jihua WangJihua Wang
Carbon-Encapsulated Tube-Wire Co3O4/MnO2 Heterostructure Nanofibers as Anode Material for Sodium-Ion Batteries
碳包管线材Co3O4/MnO2异质结构纳米纤维作为钠离子电池负极材料
- DOI:10.1002/ppsc.20180013810.1002/ppsc.201800138
- 发表时间:20182018
- 期刊:
- 影响因子:2.7
- 作者:Wenming Zhang;Ziwei Yue;Wenfang Miao;Sichen Liu;Chaochao Fu;Ling Li;Zisheng Zhang;Hong WangWenming Zhang;Ziwei Yue;Wenfang Miao;Sichen Liu;Chaochao Fu;Ling Li;Zisheng Zhang;Hong Wang
- 通讯作者:Hong WangHong Wang
共 1956 条
- 1
- 2
- 3
- 4
- 5
- 6
- 392
Hong Wang的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:23458362345836
- 财政年份:2024
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:24240152424015
- 财政年份:2024
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:20555442055544
- 财政年份:2021
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:21414262141426
- 财政年份:2021
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:20122912012291
- 财政年份:2020
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:19544221954422
- 财政年份:2020
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Continuing GrantContinuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:20009882000988
- 财政年份:2020
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:16647081664708
- 财政年份:2016
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Continuing GrantContinuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
- 批准号:16201941620194
- 财政年份:2016
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:12169231216923
- 财政年份:2012
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
高振荡Volterra积分方程及积分微分方程的数值方法研究
- 批准号:12301502
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
振荡奇异积分与极大算子的弱型范数研究
- 批准号:12301118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一类满足Bourgain条件的Hörmander振荡积分算子研究
- 批准号:12301121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含Bessel型函数的向量值高振荡积分的新型Levin方法及其应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散限制性问题及其在数论与PDEs中的应用
- 批准号:12226404
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:24240152424015
- 财政年份:2024
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:22004702200470
- 财政年份:2022
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Continuing GrantContinuing Grant
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
- 批准号:21439892143989
- 财政年份:2022
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Continuing GrantContinuing Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
- 批准号:21K0330021K03300
- 财政年份:2021
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:20555442055544
- 财政年份:2021
- 资助金额:$ 55.48万$ 55.48万
- 项目类别:Standard GrantStandard Grant